Publications by authors named "Marjo Kestila"

Background: Steroid-resistant nephrotic syndrome (SRNS) is a common cause of end-stage renal disease in children but also occurs as an adult-onset condition. In a subset of SRNS patients, pathogenic variants are found in genes coding for podocyte foot process proteins. The aim of this study was to define the role of pathogenic variants in Finnish patients with familial and sporadic SRNS.

View Article and Find Full Text PDF

Polymorphic variants in several molecules involved in the glomerular function and drug metabolism have been implicated in the pathophysiology of pediatric idiopathic nephrotic syndrome (INS), but the results remain inconsistent. We analyzed the association of eleven allelic variants in eight genes (angiopoietin-like 4 (ANGPTL4), glypican 5 (GPC5), interleukin-13 (IL-13), macrophage migration inhibitory factor (MIF), neural nitric oxide synthetase (nNOS), multidrug resistance-1 (MDR1), glucocorticoid-induced transcript-1 (GLCCI1), and nuclear receptor subfamily-3 (NR3C1)) in 100 INS patients followed up till adulthood. We genotyped variants using PCR and direct sequencing and evaluated estimated haplotypes of MDR1 variants.

View Article and Find Full Text PDF

Background: Podocyte foot process effacement is a uniform finding in kidneys with heavy proteinuria. Its molecular mechanisms, however, are unsolved. We analyzed the expression of podocyte proteins in two kidney disorders: Congenital nephrotic syndrome of the Finnish type (CNF) and minimal change nephrotic syndrome (MCNS).

View Article and Find Full Text PDF

The Finnish Disease Heritage Database (FinDis) (http://findis.org) was originally published in 2004 as a centralized information resource for rare monogenic diseases enriched in the Finnish population. The FinDis database originally contained 405 causative variants for 30 diseases.

View Article and Find Full Text PDF

The Finnish disease heritage refers to rare hereditary diseases that occur in the Finnish population in a relatively larger proportion than in other populations. The genes underlying all of the 36 diseases of the disease heritage have been identified. Together with her group and collaborators, Leena Palotie identified 15 of these, and this review includes the description of some of these achievements.

View Article and Find Full Text PDF

We report an autosomal recessive lethal syndrome characterized by multiple fetal malformations, the most obvious anomalies being the defective face and seemingly absent limbs, which are bound to the trunk and encased under the skin. We identified the molecular defect that causes this syndrome, using a combined strategy of gene-expression arrays, candidate-gene analysis, clinical studies, and genealogic investigations. A point mutation in two affected fetuses led to the loss of the conserved helix–loop–helix ubiquitous kinase (CHUK), also known as IκB kinase α.

View Article and Find Full Text PDF

Meckel syndrome (MKS) is a lethal malformation syndrome that belongs to the group of disorders that are associated with primary cilia dysfunction. Total of five genes are known to be involved in the molecular background of MKS. Here we have systematically analyzed all these genes in a total of 29 MKS families.

View Article and Find Full Text PDF

Background: Hydrolethalus syndrome (HLS) is a severe fetal malformation syndrome characterized by multiple developmental anomalies, including central nervous system (CNS) malformation such as hydrocephaly and absent midline structures of the brain, micrognathia, defective lobation of the lungs and polydactyly. Microscopically, immature cerebral cortex, abnormalities in radial glial cells and hypothalamic hamartoma are among key findings in the CNS of HLS fetuses. HLS is caused by a substitution of aspartic acid by glycine in the HYLS1 protein, whose function was previously unknown.

View Article and Find Full Text PDF

Mutations in the RECQL4 gene can lead to three clinical phenotypes with overlapping features. All these syndromes, Rothmund-Thomson (RTS), RAPADILINO and Baller-Gerold (BGS), are characterized by growth retardation and radial defects, but RAPADILINO syndrome lacks the main dermal manifestation, poikiloderma that is a hallmark feature in both RTS and BGS. It has been previously shown that RTS patients with RECQL4 mutations are at increased risk of osteosarcoma, but the precise incidence of cancer in RAPADILINO and BGS has not been determined.

View Article and Find Full Text PDF

Hydrolethalus syndrome is a lethal malformation syndrome with a severe brain malformation, most often hydrocephaly and absent midline structures. Other frequent findings are micrognathia, polydactyly, and defective lobation of the lungs. Hydrolethalus syndrome is inherited in an autosomal recessive manner and is caused by a missense mutation in the HYLS1 gene.

View Article and Find Full Text PDF

Meckel syndrome (MKS) is a lethal malformation disorder characterized classically by encephalocele, polycystic kidneys, and polydactyly. MKS is also one of the major contributors to syndromic neural tube defects (NTDs). Recent findings have shown primary cilia dysfunction in the molecular background of MKS, indicating that cilia are critical for early human development.

View Article and Find Full Text PDF

The most severe forms of motoneuron disease manifest in utero are characterized by marked atrophy of spinal cord motoneurons and fetal immobility. Here, we report that the defective gene underlying lethal motoneuron syndrome LCCS1 is the mRNA export mediator GLE1. Our finding of mutated GLE1 exposes a common pathway connecting the genes implicated in LCCS1, LCCS2 and LCCS3 and elucidates mRNA processing as a critical molecular mechanism in motoneuron development and maturation.

View Article and Find Full Text PDF

Precursor cells of the human central nervous system can be cultured in vitro to reveal pathogenesis of diseases or developmental disorders. Here, we have studied the biology of neural precursor cells (NPCs) from patients of lethal congenital contracture syndrome (LCCS), a severe motoneuron disease leading to prenatal death before the 32nd gestational week. LCCS fetuses are immobile because of a motoneuron defect, seen as degeneration of the anterior horn and descending tracts of the developing spinal cord.

View Article and Find Full Text PDF

Purpose: Congenital nephrotic syndrome of the Finnish type (CNF, NPHS1) is a rare autosomal recessive disease caused by mutations in the NPHS1 gene encoding nephrin. We diagnosed congenital nephrotic syndrome in 12 children living in a village near Jerusalem. Most of the inhabitants are descendants of one Muslim family and have maintained their isolation by preference of consanguineous marriages.

View Article and Find Full Text PDF

We describe the natural history of the RTSII phenotype in a 7-year-old boy who developed intrauterine and postnatal growth retardation, failure to thrive and persisting diarrhoea. The growth hormone stimulation test identified an isolated growth hormone deficiency. Since infancy, the patient manifested skin lesions characterized by a very mild poikilodermic-like appearance on the cheeks only, widespread café-au-lait spots and the absence of eyebrows and eyelashes.

View Article and Find Full Text PDF

Arthrogryposis multiplex congenita is a heterogeneous group of disorders characterized by multiple contractures with an estimated frequency of 1 in 3,000 births. With improving diagnostic methods, increasing numbers of fetuses with arthrogryposis are found. The pathogenetic mechanisms are relatively well known but the epidemiology and genetics of the prenatally lethal forms of arthrogryposis are less well known.

View Article and Find Full Text PDF

We report a Caucasian boy of Italian descent with congenital nephrotic syndrome of the Finnish type (NPHS1, CNF, MIM 256300) who developed recurrence of proteinuria and hypoalbuminemia on the seventh post-operative day following living related renal transplantation from his paternal aunt. The allograft biopsy was normal except for effacement of podocyte foot processes on electron microscopy. He was treated by the substitution of mycophenolate mofetil with cyclophosphamide for 12 weeks, in addition to cyclosporine, prednisone and daclizumab.

View Article and Find Full Text PDF

Meckel syndrome (MKS) is a severe fetal developmental disorder reported in most populations. The clinical hallmarks are occipital meningoencephalocele, cystic kidney dysplasia, fibrotic changes of the liver and polydactyly. Here we report the identification of a gene, MKS1, mutated in MKS families linked to 17q.

View Article and Find Full Text PDF

Human spinal cord development is still poorly understood and detailed molecular analyses of human motoneuron diseases could improve our understanding of the normal developmental processes of the spinal cord. Lethal Congenital Contracture Syndrome (LCCS, MIM 253310) provides a human model to study the early motoneuronal development. A typical phenotype of LCCS fetuses consists of multiple joint contractures, distinct facial features, and hydrops.

View Article and Find Full Text PDF

The pathogenesis of minimal change nephrotic syndrome (MCNS) is still unknown. We performed a clinical and genetic evaluation of 104 adults (mean age 35 years) who presented with MCNS in childhood (mean follow-up 30 years). Clinical data and the present health status were evaluated.

View Article and Find Full Text PDF

Background: Mutations of the human helicase gene RECQL4 have been identified in a subset of patients with Rothmund-Thomson syndrome (RTS) and in children with the diagnosis of RAPADILINO syndrome (RAdial hypoplasia/aplasia, PAtellar hypoplasia/aplasia, cleft or highly arched PAlate, DIarrhea and DIslocated joints, LIttle size [>2 SDs below the mean in height] and LImb malformation, and slender NOse and NOrmal intelligence). While many features of the 2 genetic disorders overlap, poikiloderma--a hallmark of RTS--has been described as generally absent in RAPADILINO syndrome.

Observations: We report herein a patient with RTS who carries a truncating mutation and a newly identified missense mutation of RECQL4.

View Article and Find Full Text PDF

Hydrolethalus syndrome (HLS) is an autosomal recessive lethal malformation syndrome characterized by multiple developmental defects of fetus. We have earlier mapped and restricted the HLS region to a critical 1 cM interval on 11q23-25. The linkage disequilibrium (LD) and haplotype analyses of single nucleotide polymorphism (SNP) markers helped to further restrict the HLS locus to 476 kb between genes PKNOX2 and DDX25.

View Article and Find Full Text PDF

Glomerular epithelial cells (podocytes) play an important role in the pathogenesis of proteinuria. Podocyte foot process effacement is characteristic for proteinuric kidneys, and genetic defects in podocyte slit diaphragm proteins may cause nephrotic syndrome. In this work, a systematic electron microscopic analysis was performed of the structural changes of podocytes in two important nephrotic kidney diseases, congenital nephrotic syndrome of the Finnish type and minimal-change nephrotic syndrome (MCNS).

View Article and Find Full Text PDF

Background: Minimal change nephrotic syndrome (MCNS) is a major problem in pediatric nephrology. While the pathogenesis of MCNS is not known, the latest discoveries in the genetic diseases indicate that glomerular epithelial cells (podocytes) and the slit diaphragm play a primary role in development of proteinuria. Because nephrin is known to be a major component of the slit diaphragm, we analyzed the structure of nephrin gene (NPHS1) in patients with MCNS of different severity.

View Article and Find Full Text PDF

We recently described a new type of adult onset distal myopathy (MPD3) with autosomal dominant inheritance. The onset of symptoms is around the age of 30 and the characteristic first symptoms include clumsiness of the hands and stumbling. The thenar and hypothenar muscles are involved at the onset.

View Article and Find Full Text PDF