Publications by authors named "Marjo J C Starrenburg"

This study aimed to evaluate technological (acidification, proteolysis, lipolysis, resistance to low pH, NaCl, and bile salts) and biopreservation (antimicrobial activity against foodborne pathogens) features of 1002 LAB by high throughput screening (HTS) methods. The LAB was isolated from 11 types of Brazilian artisanal cheeses (BAC) marketed in the main 5 producing regions. Remarkable intra-species variability in acidification rates have been found, which was most pronounced between isolates from Mina's artisanal cheeses, Caipira and Coalho cheeses.

View Article and Find Full Text PDF

The viability of starter cultures is essential for an adequate contribution to the fermentation process and end-product. Therefore, robustness during processing and storage is an important characteristic of starter culture strains. For instance, during spray drying cells are exposed to heat and oxidative stress, generally resulting in loss of viability.

View Article and Find Full Text PDF

Recently, we demonstrated that fermentation conditions have a strong impact on subsequent survival of Lactococcus lactis strain MG1363 during heat and oxidative stress, two important parameters during spray drying. Moreover, employment of a transcriptome-phenotype matching approach revealed groups of genes associated with robustness towards heat and/or oxidative stress. To investigate if other strains have similar or distinct transcriptome signatures for robustness, we applied an identical transcriptome-robustness phenotype matching approach on the L.

View Article and Find Full Text PDF

Background: Lactococcus lactis is industrially employed to manufacture various fermented dairy products. The most cost-effective method for the preservation of L. lactis starter cultures is spray drying, but during this process cultures encounter heat and oxidative stress, typically resulting in low survival rates.

View Article and Find Full Text PDF

Background: Lactococcus lactis is used in dairy food fermentation and for the efficient production of industrially relevant enzymes. The genome content and different phenotypes have been determined for multiple L. lactis strains in order to understand intra-species genotype and phenotype diversity and annotate gene functions.

View Article and Find Full Text PDF

Experimental evolution is a powerful approach to unravel how selective forces shape microbial genotypes and phenotypes. To this date, the available examples focus on the adaptation to conditions specific to the laboratory. The lactic acid bacterium Lactococcus lactis naturally occurs on plants and in dairy environments, and it is proposed that dairy strains originate from the plant niche.

View Article and Find Full Text PDF

A high-resolution amplified fragment length polymorphism (AFLP) methodology was developed to achieve the delineation of closely related Lactococcus lactis strains. The differentiation depth of 24 enzyme-primer-nucleotide combinations was experimentally evaluated to maximize the number of polymorphisms. The resolution depth was confirmed by performing diversity analysis on 82 L.

View Article and Find Full Text PDF

Lactobacillus plantarum is a ubiquitous microorganism that is able to colonize several ecological niches, including vegetables, meat, dairy substrates and the gastro-intestinal tract. An extensive phenotypic and genomic diversity analysis was conducted to elucidate the molecular basis of the high flexibility and versatility of this species. First, 185 isolates from diverse environments were phenotypically characterized by evaluating their fermentation and growth characteristics.

View Article and Find Full Text PDF

The diversity in regulatory phenotypes among a collection of 84 Lactococcus lactis strains isolated from dairy and nondairy origin was explored. The specific activities of five enzymes were assessed in cell extracts of all strains grown in two different media, a nutritionally rich broth and a relatively poor chemically defined medium. The five investigated enzymes, branched chain aminotransferase (BcaT), aminopeptidase N (PepN), X-prolyl dipeptidyl peptidase (PepX), alpha-hydroxyisocaproic acid dehydrogenase (HicDH), and esterase, are involved in nitrogen and fatty acid metabolism and catalyze key steps in the production of important dairy flavor compounds.

View Article and Find Full Text PDF

Lactococcus lactis is a primary constituent of many starter cultures used for the manufacturing of fermented dairy products, but the species also occurs in various nondairy niches such as (fermented) plant material. Three genome sequences of L. lactis dairy strains (IL-1403, SK11, and MG1363) are publicly available.

View Article and Find Full Text PDF

The diversity of a collection of 102 lactococcus isolates including 91 Lactococcus lactis isolates of dairy and nondairy origin was explored using partial small subunit rRNA gene sequence analysis and limited phenotypic analyses. A subset of 89 strains of L. lactis subsp.

View Article and Find Full Text PDF

Lactococcus lactis NZ9010 in which the las operon-encoded ldh gene was replaced with an erythromycin resistance gene cassette displayed a stable phenotype when grown under aerobic conditions, and its main end products of fermentation under these conditions were acetate and acetoin. However, under anaerobic conditions, the growth of these cells was strongly retarded while the main end products of fermentation were acetate and ethanol. Upon prolonged subculturing of this strain under anaerobic conditions, both the growth rate and the ability to produce lactate were recovered after a variable number of generations.

View Article and Find Full Text PDF

Everyone who has ever tried to radically change metabolic fluxes knows that it is often harder to determine which enzymes have to be modified than it is to actually implement these changes. In the more traditional genetic engineering approaches 'bottle-necks' are pinpointed using qualitative, intuitive approaches, but the alleviation of suspected 'rate-limiting' steps has not often been successful. Here the authors demonstrate that a model of pyruvate distribution in Lactococcus lactis based on enzyme kinetics in combination with metabolic control analysis clearly indicates the key control points in the flux to acetoin and diacetyl, important flavour compounds.

View Article and Find Full Text PDF