Publications by authors named "Marjana Radunz"

This study evaluated the application of thyme essential oil (TEO) encapsulated in chia mucilage in meat sausages as a partial or total substitute for sodium nitrate and nitrite. We assessed three capsules produced with different concentrations of TEO (3.5 %, 7.

View Article and Find Full Text PDF

Red wine grape pomace is an important source of bioactive compounds with biological activities of interest. Grape pomace extract can be encapsulated in ultrafine fibers using the electrospinning technique. Encapsulation is used to increase stability and protect the phenolic compounds in the extract.

View Article and Find Full Text PDF

The brassicas have the potential to prevent chronic non-communicable diseases and it is proposed to evaluate the chemical composition, antioxidant and antimicrobial potential of broccoli, cabbage and extracts. The extracts were prepared and characterized and the antioxidant potential was evaluated against three radicals while the antimicrobial potential was analyzed using three techniques against four bacteria. The extracts have glucosinolates and phenolic compounds in their composition, and effectively inhibit the 2,2-diphenyl-1-picrylhydrazyl radical.

View Article and Find Full Text PDF

The aim of this study was to develop a star fruit extract (SFE) and incorporate it into aerogels based on native and phosphorylated potato starches. The phosphorylation of starch enhances its properties by incorporating phosphate groups that increase the spaces between starch molecules, resulting in a more resilient, intact aerogel with enhanced water absorption. The bioactive aerogels based on potato starch and 10, 15, and 20 % (w/w) of SFE were characterized by their morphological and thermogravimetric properties, infrared spectra, water absorption capacity, loading capacity, and antioxidant activity.

View Article and Find Full Text PDF

Tannic acid (TA) exhibits low bioavailability in the gastrointestinal tract, limiting its benefits due to small amounts reaching the CNS. Thus, the objective of this study was to develop zein capsules and fibers by electrospraying/electrospinning for encapsulation of TA. Polymeric solutions were evaluated by electrical conductivity, density, and viscosity.

View Article and Find Full Text PDF

Phenolic compounds were extracted from biphasic olive pomace and their biological potential was characterised. Two different extracts were prepared, E1 (40% methanol) and E2 (80% methanol), both subjected to agitation (180 min) and 70 °C. LC-ESI-qTOF-MS was used for individual quantification of the extracted phenolic compounds.

View Article and Find Full Text PDF

The industry has increasingly explored the development of foods with functional properties, where supplementation with probiotics and bioactive compounds has gained prominence. In this context, the study aimed to evaluate the influence of in vitro biological digestion on the content of phenolic compounds, antioxidant activity, and inhibition of α-amylase and α-glucosidase activities of probiotic yogurt supplemented with the lactic acid bacteria Lactococcus lactis R7 and red guava extract (Psidium cattleianum). A yogurt containing L.

View Article and Find Full Text PDF

Onion is rich in bioactive and volatile compounds with antioxidant activity. However, the pungent odor of volatile compounds (VOCs) released restricts its use. The encapsulation of red onion extract by electrospinning is an alternative to mask this odor and protect its bioactive compounds.

View Article and Find Full Text PDF

Among the fruits, the apple stands out among the most used for elaboration of processed foods. However, the importance of prebiotics in apple products has never been widely analyzed. Prebiotic is a food component resistant to gastric acidity, digestion by mammalian enzymes and gastrointestinal absorption.

View Article and Find Full Text PDF

Background: Broccoli, kale, and cauliflower contain phenolic compounds and glucosinolates, which have several biological effects on the body. However, because they are thermolabile, many of these substances are lost in the cooking process. Electrospinning encapsulation, using zein as a preservative wall material, can expand the applications of the compounds in the food and pharmaceutical industries.

View Article and Find Full Text PDF

This study aimed to produce soluble potato starch ultrafine fibers for the encapsulation of pinhão coat extract (PCE), evaluating their relative crystallinity (RC), thermal stability, antioxidant activity, antimicrobial activity against Escherichia coli and Staphylococcus aureus, as well as in vitro biological digestion. In the simulation of in vitro biological digestion, the phenolic compounds release profile was also evaluated. The ultrafine fibers were produced by electrospinning, based on a polymeric solution composed of soluble potato starch (50% w/v) and formic acid.

View Article and Find Full Text PDF

Considering the low availability of gluten-free products that are offered an affordable price and good sensory characteristics, the main objective of the study was developed a gluten-free muffin based on green banana flour and evaluate their physical-chemical and sensorial aspects. The quality of the muffin was analyzed through such moisture content, ashes, proteins, lipids, fiber, carbohydrates, total caloric content, yield mass, weight loss in the supply, antioxidant activity, protein digestibility, and hedonic scale. The results showed that the gluten-free muffin had a moisture content of 26.

View Article and Find Full Text PDF

The objective of this study was to evaluate the in vitro susceptibility of fungi to starch/carvacrol nanofibers produced by electrospinning. The nanofibers were incorporated into bread dough or used in the development of active packages to minimize bread spoilage. In agar diffusion and micro-atmosphere assays, the nanofibers with 30 % or 40 % carvacrol presented inhibition zones with low growth and were effective inhibiting both the fungi evaluated in this work.

View Article and Find Full Text PDF

Compounds present in broccoli are vulnerable to the digestive process, and encapsulation becomes an alternative for their preservation. The encapsulation of broccoli extract, by electrospraying, was performed with the purpose of evaluating the effect of in vitro simulated digestion on individual compounds and antioxidant and antihyperglycemic potentials. Each digestion fraction was evaluated by chromatography, as well as for antioxidant activity and antihyperglycemic potential.

View Article and Find Full Text PDF

Synthetic preservatives can have harmful effects on the body, so plant essential oils appear to be an attractive natural alternative. However, the use of essential oils is limited due to the low stability and possible negative effects on the sensory properties of food. Oil encapsulation was suggested as a way to overcome these drawbacks.

View Article and Find Full Text PDF

Background: Thyme essential oil (TEO) is an excellent natural substitute for synthetic compounds to maintain the quality and safety of food products. It acts as an antioxidant agent. We aimed to nanoencapsulate TEO at concentrations of 1%, 3%, and 5% (v/w, dry basis) in electrospun nanofibers made of starch (50% w/v) and formic acid (75% v/v).

View Article and Find Full Text PDF

Gliomas, intracranial malignant tumors, are aggressive, asymptomatic and difficult to treat due to their degree of infiltration, alternatives are needed to treat the disease. In this sense, natural compounds from the specialized metabolism of plants can act to control the disease. Glucosinolates and phenolic compounds, present in broccoli, have a potential to promote tumor cell death, however due to the low stability of these compounds, encapsulation becomes an alternative for their preservation.

View Article and Find Full Text PDF

Clove (Syzygium aromaticum, L.) essential oil is known for its antimicrobial activity against several pathogenic bacteria. Encapsulation of clove oil was proposed as a mean to disguise its strong odor that limits its uses in food industry.

View Article and Find Full Text PDF

Acetylation and oxidation are chemical modifications which alter the properties of starch. The degree of modification of acetylated and oxidized starches is dependent on the catalyst and active chlorine concentrations, respectively. The objective of this study was to evaluate the effect of acetylation and oxidation on the structural, morphological, physical-chemical, thermal and pasting properties of barley starch.

View Article and Find Full Text PDF