In this paper, we apply a digital holographic microscope (DHM) in conjunction with stroboscopic acquisition synchronization. Here, the temperature-dependent decrease of the first resonance frequency (₁()) and Young's elastic modulus (₁()) of silicon micromechanical cantilever sensors (MCSs) are measured. To perform these measurements, the MCSs are uniformly heated from ₀ = 298 K to = 450 K while being externally actuated with a piezo-actuator in a certain frequency range close to their first resonance frequencies.
View Article and Find Full Text PDF