With the goal of mapping genomic activity, international projects have recently measured epigenetic activity in hundreds of cell and tissue types. Chromatin state annotations produced by segmentation and genome annotation (SAGA) methods have emerged as the predominant way to summarize these epigenomic data sets in order to annotate the genome. These chromatin state annotations are essential for many genomic tasks, including identifying active regulatory elements and interpreting disease-associated genetic variation.
View Article and Find Full Text PDFCoexpression analysis is widely used for inferring regulatory networks, predicting gene function, and interpretation of transcriptome profiling studies, based on methods such as clustering. The majority of such studies use data collected from bulk tissue, where the effects of cellular composition present a potential confound. However, the impact of composition on coexpression analysis has not been studied in detail.
View Article and Find Full Text PDFMotivation: Differential coexpression-the alteration of gene coexpression patterns observed in different biological conditions-has been proposed to be a mechanism for revealing rewiring of transcription regulatory networks. Despite wide use of methods for differential coexpression analysis, the phenomenon has not been well-studied. In particular, in many applications, differential coexpression is confounded with differential expression, that is, changes in average levels of expression across conditions.
View Article and Find Full Text PDF