Publications by authors named "Marjan Barazandeh"

Most of the human genome is thought to be non-functional, and includes large segments often referred to as "dark matter" DNA. The genome also encodes hundreds of putative and poorly characterized transcription factors (TFs). We determined genomic binding locations of 166 uncharacterized human TFs in living cells.

View Article and Find Full Text PDF

Lions are widely known as charismatic predators that once roamed across the globe, but their populations have been greatly affected by environmental factors and human activities over the last 150 yr. Of particular interest is the Addis Ababa lion population, which has been maintained in captivity at around 20 individuals for over 75 yr, while many wild African lion populations have become extinct. In order to understand the molecular features of this unique population, we conducted a whole-genome sequencing study on 15 Addis Ababa lions and detected 4.

View Article and Find Full Text PDF

Sequences derived from the Long INterspersed Element-1 (L1) family of retrotransposons occupy at least 17% of the human genome, with 67 distinct subfamilies representing successive waves of expansion and extinction in mammalian lineages. L1s contribute extensively to gene regulation, but their molecular history is difficult to trace, because most are present only as truncated and highly mutated fossils. Consequently, L1 entries in current databases of repeat sequences are composed mainly of short diagnostic subsequences, rather than full functional progenitor sequences for each subfamily.

View Article and Find Full Text PDF

Background: Chemogenomic profiling is a powerful approach for understanding the genome-wide cellular response to small molecules. First developed in Saccharomyces cerevisiae, chemogenomic screens provide direct, unbiased identification of drug target candidates as well as genes required for drug resistance. While many laboratories have performed chemogenomic fitness assays, few have been assessed for reproducibility and accuracy.

View Article and Find Full Text PDF

Rotating forms of suspension culture allow cells to aggregate into spheroids, prevent the de-differentiating influence of 2D culture, and, perhaps most importantly of all, provide physiologically relevant, in vivo levels of shear stress. Rotating suspension culture technology has not been widely implemented, in large part because the vessels are prohibitively expensive, labor-intensive to use, and are difficult to scale for industrial applications. Our solution addresses each of these challenges in a new vessel called a cell spinpod.

View Article and Find Full Text PDF

KRAB C2H2 zinc finger proteins (KZNFs) are the largest and most diverse family of human transcription factors, likely due to diversifying selection driven by novel endogenous retroelements (EREs), but the vast majority lack binding motifs or functional data. Two recent studies analyzed a majority of the human KZNFs using either ChIP-seq (60 proteins) or ChIP-exo (221 proteins) in the same cell type (HEK293). The ChIP-exo paper did not describe binding motifs, however.

View Article and Find Full Text PDF

C2H2 zinc finger proteins represent the largest and most enigmatic class of human transcription factors. Their C2H2-ZF arrays are highly variable, indicating that most will have unique DNA binding motifs. However, most of the binding motifs have not been directly determined.

View Article and Find Full Text PDF

Most free-living barnacles are hermaphroditic, and eggs are presumed to be fertilized either by pseudo-copulation or self-fertilization. Although the common northeast Pacific intertidal gooseneck barnacle, Pollicipes polymerus, is believed only to cross-fertilize, some isolated individuals well outside penis range nonetheless bear fertilized eggs. They must therefore either self-fertilize or-contrary to all prior expectations about barnacle mating-obtain sperm from the water.

View Article and Find Full Text PDF