Background: Acetaminophen (APAP) hepatotoxicity is associated with a high rate of gram-negative enteric bacterial infection; however, the underlying mechanism is still unknown. APAP overdose induces massive hepatocyte necrosis, necrotic tissue releases high mobility group B1 (HMGB1) and exogenous HMGB1 is able to induce gut bacterial translocation (BT) in normal mice; therefore, it is possible that HMGB1 mediates gut BT in APAP hepatotoxicity. This study aims to test this hypothesis by using anti-HMGB1 neutralizing antibody to treat APAP overdose for 24-48 hours.
View Article and Find Full Text PDFIntroduction: Inflammation may critically affect mechanisms of liver injury in acetaminophen (APAP) hepatotoxicity. Kupffer cells (KC) play important roles in inflammation, and KC depletion confers protection at early time points after APAP treatment but can lead to more severe injury at a later time point. It is possible that some inflammatory factors might contribute to liver damage at an early injurious phase but facilitate liver regeneration at a late time point.
View Article and Find Full Text PDFBackground: Acetaminophen (APAP) overdose induces massive hepatocyte necrosis. Liver regeneration is a vital process for survival after a toxic insult. Since hepatocytes are mostly in a quiescent state (G0), the regeneration process requires the priming of hepatocytes by cytokines such as TNF-α and IL-6.
View Article and Find Full Text PDF