Background: Huntington disease (HD) is a neurodegenerative disorder with complex motor and behavioural manifestations. The Q175 knock-in mouse model of HD has gained recent popularity as a genetically accurate model of the human disease. However, behavioural phenotypes are often subtle and progress slowly in this model.
View Article and Find Full Text PDFCortical-striatal synaptic dysfunction, including enhanced toxic signaling by extrasynaptic N-methyl-d-aspartate receptors (eNMDARs), precedes neurodegeneration in Huntington disease (HD). A previous study showed Activin A, whose transcription is upregulated by calcium influx via synaptic NMDARs, suppresses eNMDAR signaling. Therefore, we examined the role of Activin A in the YAC128 HD mouse model, comparing it to wild-type controls.
View Article and Find Full Text PDFThe neurodegenerative disorder, Huntington disease (HD), manifests as disorders of movement, cognition and mood. Although studies report abnormal corticostriatal synaptic function early in HD mouse models, less is known about cortical-cortical activity across brain regions and disease stages. Recently, we reported enhanced mesoscale spread of cortical responses to sensory stimulation in vivo at early-manifest stages of two HD mouse models.
View Article and Find Full Text PDFHuntington disease (HD), caused by dominantly inherited expansions of a CAG repeat results in characteristic motor dysfunction. Although gross motor defects have been extensively characterized in multiple HD mouse models using tasks such as rotarod and beam walking, less is known about forelimb deficits. We develop a high-throughput alternating reward/nonreward water-reaching task and training protocol conducted daily over approximately two months to simultaneously monitor forelimb impairment and mesoscale cortical changes in GCaMP activity, comparing female zQ175 (HD) and wild-type (WT) littermate mice, starting at ∼5.
View Article and Find Full Text PDFBackground: Huntington's disease is a progressive neurodegenerative disorder with no disease-modifying treatments. Patients experience motor, cognitive, and psychiatric disturbances, and the dorsal striatum is the main target of neurodegeneration. Mouse models of Huntington's disease show altered striatal synaptic signaling in vitro, but how these changes relate to behavioral deficits in vivo is unclear.
View Article and Find Full Text PDFHuntington disease (HD), a hereditary neurodegenerative disorder, manifests as progressively impaired movement and cognition. Although early abnormalities of neuronal activity in striatum are well established in HD models, there are fewer in vivo studies of the cortex. Here, we record local field potentials (LFPs) in YAC128 HD model mice versus wild-type mice.
View Article and Find Full Text PDFThe effective development of novel therapies in mouse models of neurologic disorders relies on behavioral assessments that provide accurate read-outs of neuronal dysfunction and/or degeneration. We designed an automated behavioral testing system (PiPaw), which integrates an operant lever-pulling task directly into the mouse home cage. This task is accessible to group-housed mice 24 h per day, enabling high-throughput longitudinal analysis of forelimb motor learning.
View Article and Find Full Text PDFPalmitoylation is the most common post-translational lipid modification in the brain; however, the role of palmitoylation and palmitoylating enzymes in the nervous system remains elusive. One of these enzymes, Zdhhc5, has previously been shown to regulate synapse plasticity. Here, we report that Zdhhc5 is also essential for the formation of excitatory, but not inhibitory, synapses both in vitro and in vivo.
View Article and Find Full Text PDFThe nucleus accumbens (NAc) plays a key role in drug-related behavior and natural reward learning. Synaptic plasticity in dopamine D1 and D2 receptor medium spiny neurons (MSNs) of the NAc and the endogenous cannabinoid (eCB) system have been implicated in reward seeking. However, the precise molecular and physiological basis of reward-seeking behavior remains unknown.
View Article and Find Full Text PDFHuntington disease (HD) is an inherited neurodegenerative disorder caused by an expansion of the CAG repeat region in the first exon of the huntingtin gene. Neurodegeneration, which begins in the striatum and then spreads to other brain areas, is preceded by dysfunction in multiple aspects of neurotransmission across a variety of brain areas. This review will provide an overview of the neurochemical mediators and modulators of synaptic transmission that are disrupted in HD.
View Article and Find Full Text PDFHuntington's disease (HD) is an inherited neurodegenerative disease affecting predominantly striatum and cortex that results in motor and cognitive disorders. Before a motor phenotype, animal models of HD show aberrant cortical-striatal glutamate signaling. Here, we tested synaptic plasticity of cortical excitatory synapses onto striatal spiny projection neurons (SPNs) early in the YAC128 mouse model of HD.
View Article and Find Full Text PDFSocial play behavior is a highly rewarding, developmentally important form of social interaction in young mammals. However, its neurobiological underpinnings remain incompletely understood. Previous work has suggested that opioid and endocannabinoid neurotransmission interact in the modulation of social play.
View Article and Find Full Text PDFHuntington disease (HD) model mice with heterozygous knock-in (KI) of an expanded CAG tract in exon 1 of the mouse huntingtin (Htt) gene homolog genetically recapitulate the mutation that causes HD, and might be favoured for preclinical studies. However, historically these mice have failed to phenotypically recapitulate the human disease. Thus, homozygous KI mice, which lack wildtype Htt, and are much less relevant to human HD, have been used.
View Article and Find Full Text PDFCorticostriatal cocultures are utilized to recapitulate the cortex-striatum connection in vitro as a convenient model to investigate the development, function, and regulation of synapses formed between cortical and striatal neurons. However, optimization of this dissociated neuronal system to more closely reproduce in vivo circuits has not yet been explored. We studied the effect of varying the plating ratio of cortical to striatal neurons on striatal spiny projection neuron (SPN) characteristics in primary neuronal cocultures.
View Article and Find Full Text PDFFragile X is the most common cause of inherited intellectual disability and a leading cause of autism. The disease is caused by mutation of a single X-linked gene called fmr1 that codes for the Fragile X mental retardation protein (FMRP), a 71 kDa protein, which acts mainly as a translation inhibitor. Fragile X patients suffer from cognitive and emotional deficits that coincide with abnormalities in dendritic spines.
View Article and Find Full Text PDFHuntington's disease (HD) is caused by an expanded polyglutamine repeat in huntingtin protein that disrupts synaptic function in specific neuronal populations and results in characteristic motor, cognitive and affective deficits. Histopathological hallmarks observed in both HD patients and genetic mouse models include the reduced expression of synaptic proteins, reduced medium spiny neuron (MSN) dendritic spine density and decreased frequency of spontaneous excitatory post-synaptic currents (sEPSCs). Early down-regulation of cannabinoid CB1 receptor expression on MSN (CB1(MSN)) is thought to participate in HD pathogenesis.
View Article and Find Full Text PDFDrug Discov Today
July 2014
Huntington's disease (HD) is an inherited neurodegenerative disorder of movement, mood and cognition, caused by a polyglutamine expansion in the huntingtin (Htt) protein. Genetic mouse models of HD, along with improved imaging techniques in humans at risk of, or affected by, HD, have advanced understanding of the cellular and/or molecular mechanisms underlying its pathogenesis. The striatum begins to degenerate before other brain areas, and altered activity at corticostriatal synapses contributes to an imbalance in survival versus death signaling pathways in this brain region.
View Article and Find Full Text PDFIn the YAC128 mouse model of Huntington disease (HD), elevated extrasynaptic NMDA receptor (Ex-NMDAR) expression contributes to the onset of striatal dysfunction and atrophy. A shift in the balance of synaptic-extrasynaptic NMDAR signaling and localization is paralleled by early stage dysregulation of intracellular calcium signaling pathways, including calpain and p38 MAPK activation, that couple to pro-death cascades. However, whether aberrant calcium signaling is a consequence of elevated Ex-NMDAR expression in HD is unknown.
View Article and Find Full Text PDFFragile X syndrome, the most commonly known genetic cause of autism, is due to loss of the fragile X mental retardation protein, which regulates signal transduction at metabotropic glutamate receptor-5 in the brain. Fragile X mental retardation protein deletion in mice enhances metabotropic glutamate receptor-5-dependent long-term depression in the hippocampus and cerebellum. Here we show that a distinct type of metabotropic glutamate receptor-5-dependent long-term depression at excitatory synapses of the ventral striatum and prefrontal cortex, which is mediated by the endocannabinoid 2-arachidonoyl-sn-glycerol, is absent in fragile X mental retardation protein-null mice.
View Article and Find Full Text PDFWe recently reported evidence for disturbed synaptic versus extrasynaptic NMDAR transmission in the early pathogenesis of Huntington's disease (HD), a late-onset neurodegenerative disorder caused by CAG repeat expansion in the gene encoding huntingtin. Studies in glutamatergic cells indicate that synaptic NMDAR transmission increases phosphorylated cyclic-AMP response element binding protein (pCREB) levels and drives neuroprotective gene transcription, whereas extrasynaptic NMDAR activation reduces pCREB and promotes cell death. By generating striatal and cortical neuronal co-cultures to investigate the glutamatergic innervation of striatal neurons, we demonstrate that dichotomous synaptic and extrasynaptic NMDAR signaling also occurs in GABAergic striatal medium-sized spiny neurons (MSNs), which are acutely vulnerable in HD.
View Article and Find Full Text PDFIn Huntington's disease (HD), the mutant huntingtin (mhtt) protein is associated with striatal dysfunction and degeneration. Excitotoxicity and early synaptic defects are attributed, in part, to altered NMDA receptor (NMDAR) trafficking and function. Deleterious extrasynaptic NMDAR localization and signalling are increased early in yeast artificial chromosome mice expressing full-length mhtt with 128 polyglutamine repeats (YAC128 mice).
View Article and Find Full Text PDFThe NMDAR plays a unique and vital role in subcellular signaling. Calcium influx initiates signaling cascades important for both synaptic plasticity and survival; however, overactivation of the receptor leads to toxicity and cell death. This dichotomy is partially explained by the subcellular location of the receptor.
View Article and Find Full Text PDFThe corollaries of the obesity epidemic that plagues developed societies are malnutrition and resulting biochemical imbalances. Low levels of essential n-3 polyunsaturated fatty acids (n-3 PUFAs) have been linked to neuropsychiatric diseases, but the underlying synaptic alterations are mostly unknown. We found that lifelong n-3 PUFAs dietary insufficiency specifically ablates long-term synaptic depression mediated by endocannabinoids in the prelimbic prefrontal cortex and accumbens.
View Article and Find Full Text PDF