Behav Res Methods
January 2025
Humans perceive discrete events such as "restaurant visits" and "train rides" in their continuous experience. One important prerequisite for studying human event perception is the ability of researchers to quantify when one event ends and another begins. Typically, this information is derived by aggregating behavioral annotations from several observers.
View Article and Find Full Text PDFTo study a core component of human intelligence-our ability to combine the meaning of words-neuroscientists have looked to linguistics. However, linguistic theories are insufficient to account for all brain responses reflecting linguistic composition. In contrast, we adopt a data-driven approach to study the composed meaning of words beyond their individual meaning, which we term 'supra-word meaning'.
View Article and Find Full Text PDFHumans perceive discrete events such as "restaurant visits" and "train rides" in their continuous experience. One important prerequisite for studying human event perception is the ability of researchers to quantify when one event ends and another begins. Typically, this information is derived by aggregating behavioral annotations from several observers.
View Article and Find Full Text PDFFront Comput Neurosci
November 2021
A pervasive challenge in brain imaging is the presence of noise that hinders investigation of underlying neural processes, with Magnetoencephalography (MEG) in particular having very low Signal-to-Noise Ratio (SNR). The established strategy to increase MEG's SNR involves averaging multiple repetitions of data corresponding to the same stimulus. However, repetition of stimulus can be undesirable, because underlying neural activity has been shown to change across trials, and repeating stimuli limits the breadth of the stimulus space experienced by subjects.
View Article and Find Full Text PDFHow do we understand the complex patterns of neural responses that underlie scene understanding? Studies of the network of brain regions held to be scene-selective-the parahippocampal/lingual region (PPA), the retrosplenial complex (RSC), and the occipital place area (TOS)-have typically focused on single visual dimensions (e.g., size), rather than the high-dimensional feature space in which scenes are likely to be neurally represented.
View Article and Find Full Text PDF