The high mortality rate caused by atherosclerosis makes it necessary to constantly search for new and better treatments. In previous reports, chemically modified carbon-coated iron nanoparticles (Fe@C NPs) have been demonstrated a high biocompatibility and promising anti-plaque properties. To further investigate these effects, the interaction of these nanoparticles with the adipose tissue of Wistar rats (in vivo) and human atherosclerotic plaques (ex vivo) was studied.
View Article and Find Full Text PDFMyocardial infarction (MI) remains the leading cause of mortality and morbidity throughout the world. Macrophages are key innate immune cells that play a significant role in transition from the inflammatory to the regenerative phase during wound healing following MI. The scavenger receptor stabilin-1 is one of the most interesting macrophage biomarkers.
View Article and Find Full Text PDFAdverse cardiac remodeling leads to impaired ventricular function and heart failure, remaining a major cause of mortality and morbidity in patients with acute myocardial infarction. It have been shown that, even if all the recommended therapies for ST-segment elevation myocardial infarction are performed, one third of patients undergoes progressive cardiac remodeling that represents morphological basis for following heart failure. The need to extend our knowledge about factors leading to different clinical scenarios of myocardial infarction and following complications has resulted in a research of immuno-inflammatory pathways and molecular activities as the basis for post-infarction remodeling.
View Article and Find Full Text PDF