Immunosensors based on field-effect transistors with nanowire channels (NWFETs) provide fast and real-time detection of a variety of biomarkers without the need for additional labels. The key feature of the developed immunosensor is the coating of silicon NWs with multilayers of polyelectrolytes (polyethylenimine (PEI) and polystyrene sulfonate (PSS)). By causing a macromolecular crowding effect, it ensures the "soft fixation" of the antibodies into the 3-D matrix of the oppositely charged layers.
View Article and Find Full Text PDFAntibiotic-resistant bacteria represent a global issue that calls for novel approaches to diagnosis and treatment. Given the variety of genetic factors that determine resistance, multiplex methods hold promise in this area. We developed a novel method to covalently attach oligonucleotide probes to the wells of polystyrene plates using photoactivation with 4-azidotetrafluorobenzaldehyde.
View Article and Find Full Text PDFGold nanoparticles (AuNPs) are popular labels for colorimetric detection of various analytes, involving proteins, nucleic acids, viruses, and whole cells because of their outstanding optical properties, inertness, and modification variability. In this work, we present an improved approach for enhancement of color intensity for DNA membrane microarrays based on seed-mediated growth of AuNP labels. Biotin-labeled DNA is hybridized with capture oligonucleotide probes immobilized on the microarrays.
View Article and Find Full Text PDFDigital quantification based on counting of individual molecules is a promising approach for different biomedical applications due to its enhanced sensitivity. Here, we present a method for the digital detection of nucleic acids (DNA and RNA) on silicon microchips based on the counting of gold nanoparticles (GNPs) in DNA duplexes by scanning electron microscopy (SEM). Biotin-labeled DNA is hybridized with capture oligonucleotide probes immobilized on the microchips.
View Article and Find Full Text PDF