Purpose: To determine the effect of solution conditions, especially low ionic strength, on the dynamics of molecular diffusion and protein-protein interactions in monoclonal antibody solutions.
Methods: The interaction parameter, k, was calculated from diffusion data obtained from dynamic light scattering (DLS) measurements performed using a Zetasizer. Theoretical considerations were utilized to evaluate the hard sphere and electrostatic contribution to molecular interactions.
Purpose: To systematically analyze shape and size of soluble irreversible aggregates and the effect of aggregate formation on viscosity.
Methods: Online light scattering, refractive index and viscosity detectors attached to HPLC (Viscotek®) were used to study aggregation, molecular weight and intrinsic viscosity of bovine serum albumin (BSA). Irreversible aggregates were generated by heat stress.
Purpose: To determine the intrinsic viscosity of several monoclonal antibodies (mAbs) under varying pH and ionic strength solution conditions.
Methods: An online viscosity detector attached to HPLC (Viscotek®) was used to determine the intrinsic viscosity of mAbs. The Ross and Minton equation was used for viscosity prediction at high protein concentrations.
Biomaterials for corneal tissue engineering must demonstrate several critical features for potential utility in vivo, including transparency, mechanical integrity, biocompatibility and slow biodegradation. Silk film biomaterials were designed and characterized to meet these functional requirements. Silk protein films were used in a biomimetic approach to replicate corneal stromal tissue architecture.
View Article and Find Full Text PDFOsteoblasts (OSTs) are derived from mesenchymal stem cells (MSCs) and coexist in close proximity with MSCs in bone during development and remodelling. Interactions between these two cell types remain obscure. Through a well-defined co-culture model, the present work demonstrated that OSTs regulate MSCs through the WNT and cadherin pathways.
View Article and Find Full Text PDFIn human body ascorbic acid plays an essential role in the synthesis and function of skeletal tissues and immune system factors. Ascorbic acid is also a major physiological antioxidant, repairing oxidatively damaged biomolecules, preventing the formation of excessive reactive oxygen species or scavenging these species. We recently reported the synthesis of ascorbic acid-functionalized polymers in which the antioxidant features of the pendant ascorbic acid groups was preserved.
View Article and Find Full Text PDF