Polymer composites with electrically conductive inclusions are intensively developed for microwave shielding applications, where lightweight and elastic coatings are necessary. In this paper, dielectric properties of hybrid polyethylene composites containing cobalt nanoparticles and multi-wall carbon nanotubes (MWCNT) were investigated in the wide frequency range of 20-40 GHz for electromagnetic shielding applications. The percolation threshold in the hybrid system is close to 6.
View Article and Find Full Text PDFElectrocatalysts for bifunctional oxygen reduction (ORR) and oxygen evolution reactions (OER) are commonly studied under hydrodynamic conditions, rendering the use of binders necessary to ensure the mechanical stability of the electrode films. The presence of a binder, however, may influence the properties of the materials under examination to an unknown extent. Herein, we investigate the impact of Nafion on a highly active ORR/OER catalyst consisting of MnFeNi oxide nanoparticles supported on multi-walled carbon nanotubes.
View Article and Find Full Text PDFInvestigating the size distributions of Co nanoparticle ensembles is an important problem, which has no straightforward solution. In this work, we use the combination of 59Co internal field nuclear magnetic resonance (59Co IF NMR) and ferromagnetic resonance (FMR) spectroscopies on a metallic Co nanoparticle sample with a narrow Co nanoparticle size distribution due to encapsulation within the inner channels of carbon nanotubes. High-resolution transmission electron microscopy (TEM) images showed that the nanoparticles can be represented as prolate spheroids, with the majority of particles having an aspect ratio between 1 and 2.
View Article and Find Full Text PDFA facile strategy is reported for the synthesis of Fe/Co mixed metal oxide nanoparticles supported on, and embedded inside, high purity oxidized multiwalled carbon nanotubes (MWCNTs) of narrow diameter distribution as effective bifunctional catalysts able to reversibly drive the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR) in alkaline solutions. Variation of the Fe/Co ratio resulted in a pronounced trend in the bifunctional ORR/OER activity. Controlled synthesis and in-depth characterization enabled the identification of an optimal Fe/Co composition, which afforded a low OER/OER reversible overvoltage of only 0.
View Article and Find Full Text PDF