The Aβ4-42 peptide is a major beta-amyloid species in the human brain, forming toxic aggregates related to Alzheimer's Disease. It also strongly chelates Cu(II) at the N-terminal Phe-Arg-His ATCUN motif, as demonstrated in Aβ4-16 and Aβ4-9 model peptides. The resulting complex resists ROS generation and exchange processes and may help protect synapses from copper-related oxidative damage.
View Article and Find Full Text PDFThe Aβ peptides ( = 38, 40, 42) are minor Aβ species in normal brains but elevated upon the application of inhibitors of Aβ processing enzymes. They are interesting from the point of view of coordination chemistry for the presence of an Arg-His metal binding sequence at their N-terminus capable of forming a 3-nitrogen (3N) three-coordinate chelate system. Similar sequences in other bioactive peptides were shown to bind Cu(II) ions in biological systems.
View Article and Find Full Text PDFDishomeostasis of Cu(II) ions in the human body is connected with several serious diseases such as Alzheimer's disease or Wilson's disease. Therefore, a deep understanding of Cu(II)-binding properties to metal ions carriers, together with the knowledge about how they can interact with other copper-binding partners, e.g.
View Article and Find Full Text PDFThe catabolism of β-amyloid (Aβ) is carried out by numerous endopeptidases including neprilysin, which hydrolyzes peptide bonds preceding positions 4, 10, and 12 to yield Aβ and a minor Aβ species. Alternative processing of the amyloid precursor protein by β-secretase also generates the Aβ species. All these peptides contain a Xxx-Yyy-His sequence, also known as an ATCUN or NTS motif, making them strong chelators of Cu(II) ions.
View Article and Find Full Text PDFSporadic Alzheimer's disease (AD) is associated with an inefficient clearance of the β-amyloid (Aβ) peptide from the central nervous system. The protein levels and activity of the Zn-dependent endopeptidase neprilysin (NEP) inversely correlate with brain Aβ levels during aging and in AD. The present study considered the ability of Cu ions to inhibit human recombinant NEP and the role for NEP in generating N-truncated Aβ fragments with high-affinity Cu binding motifs that can prevent this inhibition.
View Article and Find Full Text PDFα-Factor-1 (WHWLQLKPGQPMY), a peptidic pheromone of Saccharomyces cerevisiae yeast, contains a XHX type copper(II) binding N-terminal site. Using a soluble analogue, WHWSKNR-amide, we demonstrated that the W(1)H(2)W(3) site alone binds copper(II) with a Kd value of 0.18 pM at pH 7.
View Article and Find Full Text PDFThe N-truncated β-amyloid (Aβ) isoform Aβ4-x is known to bind Cu(2+) via a redox-silent ATCUN motif with a conditional Kd = 30 fM at pH 7.4. This study characterizes the Cu(2+) interactions and redox activity of Aβx-16 (x = 1, 4) and 2-[(dimethylamino)-methyl-8-hydroxyquinoline, a terdentate 8-hydroxyquinoline (8HQ) with a conditional Kd(CuL) = 35 pM at pH 7.
View Article and Find Full Text PDFAccumulation of the β-amyloid (Aβ) peptide in extracellular senile plaques rich in copper and zinc is a defining pathological feature of Alzheimer's disease (AD). The Aβ1-x (x=16/28/40/42) peptides have been the primary focus of Cu(II) binding studies for more than 15 years; however, the N-truncated Aβ4-42 peptide is a major Aβ isoform detected in both healthy and diseased brains, and it contains a novel N-terminal FRH sequence. Proteins with His at the third position are known to bind Cu(II) avidly, with conditional log K values at pH 7.
View Article and Find Full Text PDFThe purpose of our research was to obtain peptidomimetics possessing Cu(II) and Ni(II) binding properties, which would be useful for biomedical applications. In this context we used potentiometry, UV-VIS and CD spectroscopies to characterize the Cu(II) and Ni(II) binding properties of pentapeptide analogs of the N-terminal sequence of histatin 5. The peptides investigated had a general sequence DSXAK-am (am stands for C-terminal amide), with X including His and its three synthetic analogs, (4-thiazolyl)-L-alanine (1), (2-pyridyl)-L-alanine (2), and (pyrazol-1-yl)-L-alanine (3).
View Article and Find Full Text PDFPotentiometry and UV-vis and circular dichroism spectroscopies were applied to characterize Cu(II) coordination to the Ac-GASRHWKFL-NH2 peptide. Using HPLC and ESI-MS, we demonstrated that Cu(II) ions cause selective hydrolysis of the Ala-Ser peptide bond in this peptide and characterized the pH and temperature dependence of the reaction. We found that Cu(II)-dependent hydrolysis occurs solely in 4N complexes, in which the equatorial coordination positions of the Cu(II) ion are saturated by peptide donor atoms, namely, the pyridine-like nitrogen of the His imidazole ring and three preceding peptide bond nitrogens.
View Article and Find Full Text PDF