Rhodium(III) complexes have gained attention for their anticancer potential. In this study, we investigated a rhodium(III) bipyridylsulfonamide complex () and its ligand () for their effects on breast cancer (SKBr3) and noncancerous mammary cells (HB2). Both compounds significantly reduced oxidative phosphorylation (OXPHOS) and mitochondrial function in SKBr3 cells while sparing HB2 cells.
View Article and Find Full Text PDFA series of four Cd(II) complexes with 5-methyl-4-imidazolecarboxaldehyde (L) with different inorganic anions within or outside the coordination sphere of general formula: [CdClL] (1), [CdBrL] (2), [CdIL] (3), and [CdL](PF)·3HO (4) was synthesized through one-step and two-step reactions, respectively. All complexes were obtained as colorless crystals without the need for recrystallization and exhibited solubility in aqueous solutions. Structural analysis revealed different coordination environments for each complex, with variations in bond lengths and angles.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
August 2024
DNA is a key target for anticancer and antimicrobial drugs. Assessing the bioactivity of compounds involves in silico and instrumental studies to determine their affinity for biomolecules like DNA. This study explores the potential of the switchSense technique in rapidly evaluating compound bioactivity towards DNA.
View Article and Find Full Text PDFHuman DNA topoisomerases are essential for crucial cellular processes, including DNA replication, transcription, chromatin condensation, and maintenance of its structure. One of the significant strategies employed in cancer treatment involves the inhibition of a specific type of topoisomerase, known as topoisomerase II (Topo II). Carbazole derivatives, recognised for their varied biological activities, have recently become a significant focus in oncological research.
View Article and Find Full Text PDFOrganometallic half-sandwich complexes [(η-Cp)IrCl(L)]PF () and [(η-Cp)RhCl(L)]PF () were prepared using pentamethylcyclopentadienyl chloride dimers of iridium(III) or rhodium(III) with the 4-amino--(2,2'-bipyridin-5-yl)benzenesulfonamide ligand () and ammonium hexafluorophosphate. The crystal structures of , , and were analyzed in detail. The coordination reactions of the ligand with the central ions were confirmed using various spectroscopic techniques.
View Article and Find Full Text PDFAntibiotics play a key role in the fight against bacterial diseases. However, bacteria quickly learn how to minimize the effects of antibiotics and strengthen their resistance. Thus, the fight against them becomes more and more difficult and there is a constant search for new bactericidal compounds.
View Article and Find Full Text PDFIn this work, we present studies on relatively new and still not well-explored potential anticancer targets which are shelterin proteins, in particular the TRF1 protein can be blocked by in silico designed "peptidomimetic" molecules. TRF1 interacts directly with the TIN2 protein, and this protein-protein interaction is crucial for the proper functioning of telomere, which could be blocked by our novel modified peptide molecules. Our chemotherapeutic approach is based on assumption that modulation of TRF1-TIN2 interaction may be more harmful for cancer cells as cancer telomeres are more fragile than in normal cells.
View Article and Find Full Text PDFThe discovery and introduction of the switchSense technique in the chemical laboratory have drawn well-deserved interest owing to its wide range of applications. Namely, it can be used to determine the diameter of proteins, alterations in their tertiary structures (folding), and many other conformational changes that are important from a biological point of view. The essence of this technique is based on its ability to study of the interactions between an analyte and a ligand in real time (in a buffer flow).
View Article and Find Full Text PDFIsothermal titration calorimetry, circular dichroism (CD) techniques, and analysis were used to determine potential metal binding sites in human cationic antimicrobial protein (hCAP) corresponding to overlapping the dodecapeptide sequences of hCAP(134-170) referred to as LL-37. The correct antibacterial action of LL-37 is closely related to its established unique structure. Disturbances in the LL-37 structure (e.
View Article and Find Full Text PDFPyrazine and its derivatives are a large group of compounds that exhibit broad biological activity, the changes of which can be easily detected by a substituent effect or a change in the functional group. The present studies combined theoretical research with the density functional theory (DFT) approach (B3LYP/6-311+G**) and experimental (potentiometric and spectrophotometric) analysis for a thorough understanding of the structure of chlorohydrazinopyrazine, its physicochemical and cytotoxic properties, and the site and nature of interaction with DNA. The obtained results indicated that 2-chloro-3-hydrazinopyrazine (2Cl3HP) displayed the highest affinity to DNA.
View Article and Find Full Text PDFThe biological activity of Cd compounds has been investigated scarce since Cd has been recognized as a human carcinogen. However, the toxicity of cadmium is comparable to the toxicity of noble metals such as Pt and Pd. The paradigm of metal toxicity has been challenged suggesting that metal toxicity is not a constant property, yet it depends on many factors like the presence of appropriate ligands.
View Article and Find Full Text PDFOne of the definitions of hydrophobic interactions is the aggregation of nonpolar particles in a polar solvent, such as water. While this phenomenon appears to be very simple, it is crucial for many complex processes, such as protein folding, to take place. In this work, the hydrophobic association of adamantane and hexane at various temperatures and ionic strengths was studied using molecular dynamics simulations with the AMBER 16.
View Article and Find Full Text PDFAntibiotic resistance is a global problem, and one promising solution to overcome this issue is using metallodrugs, which are drugs containing metal ions and ligands. These complexes are superior to free ligands in various characteristics including anticancer properties and mechanism of action. The pharmacological potential of metallodrugs can be modulated by the appropriate selection of ligands and metal ions.
View Article and Find Full Text PDFThe physics-based united-residue (UNRES) model of proteins ( www.unres.pl ) has been designed to carry out large-scale simulations of protein folding.
View Article and Find Full Text PDFThe interactions of compounds with DNA have been studied since the recognition of the role of nucleic acid in organisms. The design of molecules which specifically interact with DNA sequences allows for the control of the gene expression. Determining the type and strength of such interaction is an indispensable element of pharmaceutical studies.
View Article and Find Full Text PDFThe design of drug structures that are non-toxic, easily transported and permeable to cellular barriers is currently one of the most growing research trends. Indeed, the structural similarity of 2-hydrazinopyrazine (2HP) to pyrazinamide, which has been successfully used in anti-tuberculosis therapy, makes 2HP a promising research object. Thus, herein, a complete analysis of the structure of 2HP and its physicochemical and cytotoxic properties was performed.
View Article and Find Full Text PDFHydrophobicity is a phenomenon of great importance in biology, chemistry, and biochemistry. It is defined as the interaction between nonpolar molecules or groups in water and their low solubility. Hydrophobic interactions affect many processes in water, for example, complexation, surfactant aggregation, and coagulation.
View Article and Find Full Text PDFCarbazole skeleton plays a significant role as a structural scaffold of many pharmacologically active compounds. Pyrazine-functionalized carbazole derivative was constructed by coupling 2-amino-5-bromo-3-methylaminepyrazine (ABMAP) into 3 and 6 positions of the carbazole ring. Multi-experimental methods were used, e.
View Article and Find Full Text PDFIn this chapter the scale-consistent approach to the derivation of coarse-grained force fields developed in our laboratory is presented, in which the effective energy function originates from the potential of mean force of the system under consideration and embeds atomistically detailed interactions in the resulting energy terms through use of Kubo's cluster-cumulant expansion, appropriate selection of the major degrees of freedom to be averaged out in the derivation of analytical approximations to the energy terms, and appropriate expression of the interaction energies at the all-atom level in these degrees of freedom. Our approach enables the developers to find correct functional forms of the effective coarse-grained energy terms, without having to import them from all-atom force fields or deriving them on a heuristic basis. In particular, the energy terms derived in such a way exhibit correct dependence on coarse-grained geometry, in particular on site orientation.
View Article and Find Full Text PDFPyridine, its N-oxide, and their derivatives are exciting classes of organic bases. These compounds show widespread biological activity, and they are often used in synthesis. In this work results on theoretical calculations of acid dissociation constants as p of pyridine, its -oxide, and their derivatives were done based on the thermodynamic cycle in water and acetonitrile.
View Article and Find Full Text PDFPhosphorylated proteins take part in many signaling pathways and play a key role in homeostasis regulation. The all-atom force fields enable us to study the systems containing phosphorylated proteins, but they are limited to short time scales. In this paper, we report the extension of the physics-based coarse-grained UNRES force field to treat systems with phosphorylated amino-acid residues.
View Article and Find Full Text PDFIntramolecular proton-transfers (prototropic conversions) have been studied for the guanine building block isocytosine (iC), and effects of positive ionization, called one-electron oxidation (iC - e → iC), and negative ionization, called one-electron reduction (iC + e → iC), on tautomeric conversions when proceeding from neutral to ionized isocytosine have been discussed. Although radical cations and radical anions are very short-lived species, the ionization effects could be investigated by quantum-chemical methods. Such kind of studies gives some information about the labile protons and the most basic positions in the neutral and radical forms of the tautomeric system.
View Article and Find Full Text PDFCoordination chemistry offers much scope for the design of novel and therapeutic agents, including metallopharmaceuticals. The widespread use of metal complexes as effective pharmaceuticals, e.g.
View Article and Find Full Text PDF