J Environ Sci Health A Tox Hazard Subst Environ Eng
August 2019
Hybrid disintegration of waste activated sludge (WAS) before the thermophilic anaerobic stabilization of WAS contributes to the intensification of organic compounds decomposition and increases the effectiveness of the anaerobic stabilization process compared to the fermentation of raw WAS. This article investigates the influence of a chemical-thermal pretreatment procedure with the use of NaOH and freezing by the dry ice on WAS. We found that the hybrid pretreatment of WAS causes higher concentration of released organics in the liquid phase (represented here as a change in soluble chemical oxygen demand - SCOD value) in comparison to these disintegration techniques used separately.
View Article and Find Full Text PDFThe main aim of this study was to optimize pretreatment strategies of Miscanthus × giganteus for biosuccinic acid production. A successful pretreatment with organosolv method (80% w/w of glycerol, 1.25% of HSO), prevented sugars conversion to furfurals and organic acids, and thereby resulted in high sugar recovery (glucan > 98%, xylan > 91%) and biomass delignification (60%).
View Article and Find Full Text PDFThe aim of this study was to develop an integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production process from rapeseed straw after dilute-acid pretreatment. Rapeseed straw pretreatment at 20% (w/v) solid loading and subsequent hydrolysis with Cellic® CTec2 resulted in high glucose yield (80%) and ethanol output (122-125 kg of EtOH/Mg of rapeseed straw). Supplementation the enzymatic process with 10% dosage of endoxylanases (Cellic® HTec2) reduced the hydrolysis time required to achieve the maximum glucan conversion by 44-46% and increased the xylose yield by 10% compared to the process with Cellic® CTec2.
View Article and Find Full Text PDFThe aim of this study was to develop integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production from industrial hemp (Cannabis sativa L.) in a biorefinery concept. Two types of pretreatments were studied (dilute-acid and alkaline oxidative method).
View Article and Find Full Text PDFThe aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors.
View Article and Find Full Text PDFIn the present study, combined steam (140-180°C) and dilute-acid pre-hydrolysis (0.0-2.0%) were applied to industrial hemp (Cannabis sativa L.
View Article and Find Full Text PDFIn the present study, the sludge was pretreated with microwave irradiation and low-temperature thermal method, both conducted under the same temperature range (30-100°C). Microwave pretreatment was found to be superior over the thermal treatment with respect to sludge solubilization and biogas production. Taking into account the specific energy demand of solubilization, the sludge pre-treated at 60-70°C by microwaves of 900 W was chosen for further experiments in continuous mode, which was more energetically sustainable compared to lower value (700 W) and thermal treatment.
View Article and Find Full Text PDF