Publications by authors named "Marius P Sumandea"

Skeletal muscles are the most abundant tissues in the human body. They are composed of a heterogeneous collection of muscle fibers that perform various functions. Skeletal muscle troponin (sTn) regulates skeletal muscle contraction and relaxation.

View Article and Find Full Text PDF

An altered cardiac myofilament response to activating Ca(2+) is a hallmark of human heart failure. Phosphorylation of cardiac troponin I (cTnI) is critical in modulating contractility and Ca(2+) sensitivity of cardiac muscle. cTnI can be phosphorylated by protein kinase A (PKA) at Ser(22/23) and protein kinase C (PKC) at Ser(22/23), Ser(42/44), and Thr(143).

View Article and Find Full Text PDF

This study was conducted to identify molecular mechanisms which explain interventricular differences in myofilament function in experimental congestive heart failure (CHF). CHF was induced in rats by chronic aortic banding or myocardial infarction for 32-36 weeks. Right and left ventricular (RV, LV) myocytes were mechanically isolated, triton-skinned, and attached to a force transducer and motor arm.

View Article and Find Full Text PDF

Oxidative stress is common in many clinically important cardiac disorders, including ischemia/reperfusion, diabetes, and hypertensive heart disease. Oxidative stress leads to derangements in pump function due to changes in the expression or function of proteins that regulate intracellular Ca(2+) homeostasis. There is growing evidence that the cardiodepressant actions of reactive oxygen species (ROS) also are attributable to ROS-dependent signaling events in the sarcomere.

View Article and Find Full Text PDF

Doxorubicin is a chemotherapeutic agent prescribed for a variety of tumors. While undergoing treatment, patients exhibit frequent symptoms that suggest respiratory muscle weakness. Cancer patients can receive doxorubicin chemotherapy through either intravenous (IV) or intraperitoneal (IP) injections.

View Article and Find Full Text PDF

Efficient and specific phosphorylation of PKA substrates, elicited in response to β-adrenergic stimulation, require spatially confined pools of PKA anchored in proximity of its substrates. PKA-dependent phosphorylation of cardiac sarcomeric proteins has been the subject of intense investigations. Yet, the identity, composition, and function of PKA complexes at the sarcomeres have remained elusive.

View Article and Find Full Text PDF

Ca(2+) desensitization of myofilaments is indicated as a primary mechanism for the pathogenesis of familial dilated cardiomyopathy (DCM) associated with the deletion of lysine 210 (DeltaK210) in cardiac troponin T (cTnT). DeltaK210 knock-in mice closely recapitulate the clinical phenotypes documented in patients with this mutation. Considerable evidence supports the proposition that phosphorylation of cardiac sarcomeric proteins is a key modulator of function and may exacerbate the effect of the deletion.

View Article and Find Full Text PDF

Cardiac troponin T (cTnT) is a phosphoprotein that modulates cardiac muscle contraction through its extensive and diverse interactions with neighboring thin filament proteins. Its N-terminal half is the "glue" that anchors the troponin complex to tropomyosin-actin. Until now, studies aimed at investigating the role of the N-terminal tail region have not considered the effects of phosphorylation.

View Article and Find Full Text PDF

Phosphorylation of cardiac troponin is a key mechanism involved in regulation of contractile function. In vitro kinase assays revealed that lysates prepared from resting cardiomyocytes contain cardiac troponin I (cTnI) and cTnT kinase activity. cTnI phosphorylation is inhibited by pharmacologic inhibitors of PKA, PKC, Rho kinase and PKC effectors such as RSK and PKD; these kinase inhibitors do not inhibit phosphorylation of cTnT.

View Article and Find Full Text PDF

Our study identifies tyrosine phosphorylation as a novel protein kinase Cdelta (PKCdelta) activation mechanism that modifies PKCdelta-dependent phosphorylation of cardiac troponin I (cTnI), a myofilament regulatory protein. PKCdelta phosphorylates cTnI at Ser23/Ser24 when activated by lipid cofactors; Src phosphorylates PKCdelta at Tyr311 and Tyr332 leading to enhanced PKCdelta autophosphorylation at Thr505 (its activation loop) and PKCdelta-dependent cTnI phosphorylation at both Ser23/Ser24 and Thr144. The Src-dependent acquisition of cTnI-Thr144 kinase activity is abrogated by Y311F or T505A substitutions.

View Article and Find Full Text PDF

As a critical step toward understanding the role of abnormal intracellular Ca(2+) release via the ryanodine receptor (RyR(2)) during the development of hypertension-induced cardiac hypertrophy and heart failure, this study examines two questions: 1) At what stage, if ever, in the development of hypertrophy and heart failure is RyR(2) hyperphosphorylated at Ser(2808)? 2) Does the spatial distribution of RyR(2) clusters change in failing hearts? Using a newly developed semiquantitative immunohistochemistry method and Western blotting, we measured phosphorylation of RyR(2) at Ser(2808) in the spontaneously hypertensive rat (SHR) at four distinct disease stages. A major finding is that hyperphosphorylation of RyR(2) at Ser(2808) occurred only at late-stage heart failure in SHR, but not in age-matched controls. Furthermore, the spacing between RyR(2) clusters was shortened in failing hearts, as predicted by quantitative model simulation to increase spontaneous Ca(2+) wave generation and arrhythmias.

View Article and Find Full Text PDF

It is becoming clear that upregulated protein kinase C (PKC) signaling plays a role in reduced ventricular myofilament contractility observed in congestive heart failure. However, data are scant regarding which PKC isozymes are involved. There is evidence that PKC-alpha may be of particular importance.

View Article and Find Full Text PDF

Actin capping protein (CapZ) anchors the barbed ends of sarcomeric actin to the Z-disc. Myofilaments from transgenic mice (TG-CapZ) expressing a reduced amount of CapZ demonstrate altered function and protein kinase C (PKC) signaling [Pyle WG, Hart MC, Cooper JA, Sumandea MP, de Tombe PP, and Solaro RJ., Circ.

View Article and Find Full Text PDF

It is currently unclear whether left ventricular (LV) myofilament function is depressed in experimental LV hypertrophy (LVH) or congestive heart failure (CHF). To address this issue, we studied pressure overload-induced LV hypertrophy (POLVH) and myocardial infarction-elicited congestive heart failure (MICHF) in rats. LV myocytes were isolated from control, POLVH, and MICHF hearts by mechanical homogenization, skinned with Triton, and attached to micropipettes that projected from a sensitive force transducer and high-speed motor.

View Article and Find Full Text PDF

An increasing body of evidence points to posttranslational modifications of the thin filament regulatory proteins, cardiac troponin T (cTnT) and cardiac troponin I (cTnI) by protein kinase C (PKC) phosphorylation as important in both long- and short-term regulation of cardiac function and potentially implicated in the transition between compensated hypertrophy and decompensation. The main sites for PKC-dependent phosphorylation on cTnI are Ser43, Ser45, and Thr144 and on cTnT are Thr197, Ser201, Thr206, and Thr287 (mouse sequence). We analyzed the function of each phosphorylation residue using a phosphorylation mimic approach introducing glutamates (E) at PKC phosphorylation sites and then measuring the isometric tension of fiber bundles exchanged with these mutants.

View Article and Find Full Text PDF

A region of interaction between the near N-terminal of cardiac troponin I (cTnI) and the C-lobe of troponin C (cTnC), where troponin T (cTnT) binds, appears to be critical in regulation of myofilament Ca(2+)-activation. We probed whether functional consequences of modulation of this interface influence the function of tropomyosin (Tm) in thin filament activation. We modified the C-lobe of cTnC directly by addition of the Ca(2+)-sensitizer, EMD 57033, and indirectly by replacing native cTnI with cTnI-containing Glu residues at Ser-43 and Ser-45 (cTnI-S43E/S45E) in myofilaments from hearts of non-transgenic (NTG) and transgenic (TG) mice expressing a point mutation on alpha-Tm (E180G) linked to familial hypertrophic cardiomyopathy.

View Article and Find Full Text PDF

Cardiac Troponin T (cTnT) is one prominent substrate through which protein kinase C (PKC) exerts its effect on cardiomyocyte function. To determine the specific functional effects of the cTnT PKC-dependent phosphorylation sites (Thr197, Ser201, Thr206, and Thr287) we first mutated these residues to glutamate (E) or alanine (A). cTnT was selectively mutated to generate single, double, triple, and quadruple mutants.

View Article and Find Full Text PDF

There is evidence that multi-site phosphorylation of cardiac troponin I (cTnI) by protein kinase C is important in both long- and short-term regulation of cardiac function. To determine the specific functional effects of these phosphorylation sites (Ser-43, Ser-45, and Thr-144), we measured tension and sliding speed of thin filaments in reconstituted preparations in which endogenous cTnI was replaced with cTnI phosphorylated by protein kinase C-epsilon or mutated to cTnI-S43E/S45E/T144E, cTnI-S43E/S45E, or cTnI-T144E. We used detergent-skinned mouse cardiac fiber bundles to measure changes in Ca(2+)-dependence of force.

View Article and Find Full Text PDF

We studied Ca(2+) dependence of tension and actomyosin ATPase rate in detergent extracted fiber bundles isolated from transgenic mice (TG), in which cardiac troponin I (cTnI) serines 43 and 45 were mutated to alanines (cTnI S43A/S45A). Basal phosphorylation levels of cTnI were lower in TG than in wild-type (WT) mice, but phosphorylation of cardiac troponin T was increased. Compared with WT, TG fiber bundles showed a 13% decrease in maximum tension and a 20% increase in maximum MgATPase activity, yielding an increase in tension cost.

View Article and Find Full Text PDF

Actin capping protein (CapZ) binds the barbed ends of actin at sarcomeric Z-lines. In addition to anchoring actin, Z-discs bind protein kinase C (PKC). Although CapZ is crucial for myofibrillogenesis, its role in muscle function and intracellular signaling is unknown.

View Article and Find Full Text PDF