A capacitive micromachined ultrasound transducer (CMUT) was engineered and functionalized with zeolitic imidazolate framework-8 (ZIF-8) dispersed in a photoresist AZ1512HS (AZ) matrix to function as a gravimetric gas sensor. The sensor response was recorded in the presence of nitrogen, argon, carbon dioxide, and methane gases as well as water, acetylene, a propane/butane mixture, n-hexane, gasoline, and diesel vapors. The photoresist matrix alone was found to have a negligible response to all the gases and vapors, except for water vapor.
View Article and Find Full Text PDFThe effect of microchannel height on acoustic streaming velocity and capacitive micromachined ultrasound transducer (CMUT) cell damping was investigated. Microchannels with heights ranging from 0.15 to 1.
View Article and Find Full Text PDFThe trade-off between the functionalization shift of the informative parameters and sensitivity of capacitive micromachined ultrasound transducers (CMUT)-based CO sensors is addressed, and the CMUT surface modification process by thin inkjet-printed polyethyleneimine (PEI) films is optimized. It was shown that by the proper preparation of the active CMUT surface and properly diluted PEI solution, it is possible to minimize the functionalization shift of the resonance frequency and the quality of the resonance and preserve the sensitivity potential. So, after optimization, we demonstrated 23.
View Article and Find Full Text PDF