In this paper, we present the first publicly available 3D statistical facial shape model of babies, the Baby Face Model (BabyFM). Constructing a model of the facial geometry of babies entails specific challenges, such as occlusions, extreme and uncontrollable expressions, and data shortage. We address these challenges by proposing (1) a non-template dependent method that jointly estimates a 3D facial baby-specific template and the point-to-point correspondences; (2) a novel method to establish correspondences based on the spectral decomposition of the Laplace Beltrami Operator, which provides a more robust theoretical foundation than state-of-the-art methods; and (3) an asymmetry-swapping strategy to alleviate the shortage of large scale datasets by decoupling the identity-related and the asymmetry-related shape deformation fields.
View Article and Find Full Text PDFProper personal protective equipment (PPE) use is critical to prevent disease transmission to healthcare providers, especially those treating patients with a high infection risk. To address the challenge of monitoring PPE usage in healthcare, computer vision has been evaluated for tracking adherence. Existing datasets for this purpose, however, lack a diversity of PPE and nonadherence classes, represent single not multiple providers, and do not depict dynamic provider movement during patient care.
View Article and Find Full Text PDFBackground: Diffuse intrinsic pontine glioma (DIPG) is a fatal childhood central nervous system tumor. Diagnosis and monitoring of tumor response to therapy is based on magnetic resonance imaging (MRI). MRI-based analyses of tumor volume and appearance may aid in the prediction of patient overall survival (OS).
View Article and Find Full Text PDFObjectives: Human monitoring of personal protective equipment (PPE) adherence among healthcare providers has several limitations, including the need for additional personnel during staff shortages and decreased vigilance during prolonged tasks. To address these challenges, we developed an automated computer vision system for monitoring PPE adherence in healthcare settings. We assessed the system performance against human observers detecting nonadherence in a video surveillance experiment.
View Article and Find Full Text PDFCleft Palate Craniofac J
August 2024
Objective: Prospectively validate the accuracy of smartphone-based digital cranial measurements for the diagnosis and treatment of deformational plagiocephaly and/or brachycephaly (DPB), compared with calipers used in the standard of care.
Design/methods: Bird's-eye-view head photos were captured via smartphone, and their heads were measured with hand calipers by an expert user. CI/CVAI/CVA were calculated from photos and caliper measurements, and from 3D photogrammetry of the head as ground truth.
Background: Diffuse midline gliomas (DMG) are aggressive pediatric brain tumors that are diagnosed and monitored through MRI. We developed an automatic pipeline to segment subregions of DMG and select radiomic features that predict patient overall survival (OS).
Methods: We acquired diagnostic and post-radiation therapy (RT) multisequence MRI (T1, T1ce, T2, and T2 FLAIR) and manual segmentations from 2 centers: 53 from 1 center formed the internal cohort and 16 from the other center formed the external cohort.
The Radiological Society of North of America (RSNA) and the Medical Image Computing and Computer Assisted Intervention (MICCAI) Society have led a series of joint panels and seminars focused on the present impact and future directions of artificial intelligence (AI) in radiology. These conversations have collected viewpoints from multidisciplinary experts in radiology, medical imaging, and machine learning on the current clinical penetration of AI technology in radiology and how it is impacted by trust, reproducibility, explainability, and accountability. The collective points-both practical and philosophical-define the cultural changes for radiologists and AI scientists working together and describe the challenges ahead for AI technologies to meet broad approval.
View Article and Find Full Text PDFChest X-rays (CXRs) play a pivotal role in cost-effective clinical assessment of various heart and lung related conditions. The urgency of COVID-19 diagnosis prompted their use in identifying conditions like lung opacity, pneumonia, and acute respiratory distress syndrome in pediatric patients. We propose an AI-driven solution for binary COVID-19 versus non-COVID-19 classification in pediatric CXRs.
View Article and Find Full Text PDFPurpose: The diagnosis of chronic increased intracranial pressure (IIP)is often based on subjective evaluation or clinical metrics with low predictive value. We aimed to quantify cranial bone changes associated with pediatric IIP using CT images and to identify patients at risk.
Methods: We retrospectively quantified local cranial bone thickness and mineral density from the CT images of children with chronic IIP and compared their statistical differences to normative children without IIP adjusting for age, sex and image resolution.
Background: Identification of children with latent rheumatic heart disease (RHD) by echocardiography, before onset of symptoms, provides an opportunity to initiate secondary prophylaxis and prevent disease progression. There have been limited artificial intelligence studies published assessing the potential of machine learning to detect and analyze mitral regurgitation or to detect the presence of RHD on standard portable echocardiograms.
Methods And Results: We used 511 echocardiograms in children, focusing on color Doppler images of the mitral valve.
Pediatric brain and spinal cancers remain the leading cause of cancer-related death in children. Advancements in clinical decision-support in pediatric neuro-oncology utilizing the wealth of radiology imaging data collected through standard care, however, has significantly lagged other domains. Such data is ripe for use with predictive analytics such as artificial intelligence (AI) methods, which require large datasets.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
An accurate classification of upper limb movements using electroencephalogram (EEG) signals is gaining significant importance in recent years due to the prevalence of brain-computer interfaces. The upper limbs in the human body are crucial since different skeletal segments combine to make a range of motions that helps us in our trivial daily tasks. Decoding EEG-based upper limb movements can be of great help to people with spinal cord injury (SCI) or other neuro-muscular diseases such as amyotrophic lateral sclerosis (ALS), primary lateral sclerosis, and periodic paralysis.
View Article and Find Full Text PDFWe present the first data-driven pediatric model that explains cranial sutural growth in the pediatric population. We segmented the cranial bones in the neurocranium from the cross-sectional CT images of 2068 normative subjects (age 0-10 years), and we used a 2D manifold-based cranial representation to establish local anatomical correspondences between subjects guided by the location of the cranial sutures. We designed a diffeomorphic spatiotemporal model of cranial bone development as a function of local sutural growth rates, and we inferred its parameters statistically from our cross-sectional dataset.
View Article and Find Full Text PDFBackground: Diffuse midline gliomas (DMG) are aggressive pediatric brain tumors that are diagnosed and monitored through MRI. We developed an automatic pipeline to segment subregions of DMG and select radiomic features that predict patient overall survival (OS).
Methods: We acquired diagnostic and post-radiation therapy (RT) multisequence MRI (T1, T1ce, T2, T2 FLAIR) and manual segmentations from two centers of 53 (internal cohort) and 16 (external cohort) DMG patients.
Cross-institution collaborations are constrained by data-sharing challenges. These challenges hamper innovation, particularly in artificial intelligence, where models require diverse data to ensure strong performance. Federated learning (FL) solves data-sharing challenges.
View Article and Find Full Text PDFMeningiomas are the most common primary intracranial tumor in adults and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on multiparametric MRI (mpMRI) for diagnosis, treatment planning, and longitudinal treatment monitoring; yet automated, objective, and quantitative tools for non-invasive assessment of meningiomas on mpMRI are lacking. The BraTS meningioma 2023 challenge will provide a community standard and benchmark for state-of-the-art automated intracranial meningioma segmentation models based on the largest expert annotated multilabel meningioma mpMRI dataset to date.
View Article and Find Full Text PDFThe translation of AI-generated brain metastases (BM) segmentation into clinical practice relies heavily on diverse, high-quality annotated medical imaging datasets. The BraTS-METS 2023 challenge has gained momentum for testing and benchmarking algorithms using rigorously annotated internationally compiled real-world datasets. This study presents the results of the segmentation challenge and characterizes the challenging cases that impacted the performance of the winning algorithms.
View Article and Find Full Text PDFBackground And Objective: Accurate and repeatable detection of craniofacial landmarks is crucial for automated quantitative evaluation of head development anomalies. Since traditional imaging modalities are discouraged in pediatric patients, 3D photogrammetry has emerged as a popular and safe imaging alternative to evaluate craniofacial anomalies. However, traditional image analysis methods are not designed to operate on unstructured image data representations such as 3D photogrammetry.
View Article and Find Full Text PDFPediatric tumors of the central nervous system are the most common cause of cancer-related death in children. The five-year survival rate for high-grade gliomas in children is less than 20%. Due to their rarity, the diagnosis of these entities is often delayed, their treatment is mainly based on historic treatment concepts, and clinical trials require multi-institutional collaborations.
View Article and Find Full Text PDFImage segmentation, labeling, and landmark detection are essential tasks for pediatric craniofacial evaluation. Although deep neural networks have been recently adopted to segment cranial bones and locate cranial landmarks from computed tomography (CT) or magnetic resonance (MR) images, they may be hard to train and provide suboptimal results in some applications. First, they seldom leverage global contextual information that can improve object detection performance.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
November 2022
In early life, the neurocranium undergoes rapid changes to accommodate the expanding brain. Neurocranial maturation can be disrupted by developmental abnormalities and environmental factors such as sleep position. To establish a baseline for the early detection of anomalies, it is important to understand how this structure typically grows in healthy children.
View Article and Find Full Text PDF