The Lieb-Robinson bound asserts the existence of a maximal propagation speed for the quantum dynamics of lattice spin systems. Such general bounds are not available for most bosonic lattice gases due to their unbounded local interactions. Here we establish for the first time a general ballistic upper bound on macroscopic particle transport in the paradigmatic Bose-Hubbard model.
View Article and Find Full Text PDFThe S=1 Affleck-Kennedy-Lieb-Tasaki (AKLT) quantum spin chain was the first rigorous example of an isotropic spin system in the Haldane phase. The conjecture that the S=3/2 AKLT model on the hexagonal lattice is also in a gapped phase has remained open, despite being a fundamental problem of ongoing relevance to condensed-matter physics and quantum information theory. Here we confirm this conjecture by demonstrating the size-independent lower bound Δ>0.
View Article and Find Full Text PDFNematic elastomers and glasses are solids that display spontaneous distortion under external stimuli. Recent advances in the synthesis of sheets with controlled heterogeneities have enabled their actuation into nontrivial shapes with unprecedented energy density. Thus, these have emerged as powerful candidates for soft actuators.
View Article and Find Full Text PDFWe announce and sketch the rigorous proof of a new kind of anomalous (or sub-ballistic) Lieb-Robinson (LR) bound for an isotropic XY chain in a quasiperiodic transversal magnetic field. Instead of the usual effective light cone |x|≤v|t|, we obtain |x|≤v|t|α for some 0<α<1. We can characterize the allowed values of α exactly as those exceeding the upper transport exponent αu+ of a one-body Schrödinger operator.
View Article and Find Full Text PDF