Publications by authors named "Marius Karlsen"

Salmonid Rickettsial Septicemia (SRS), caused by the bacterium , is the main reason for antibiotic usage in the Chilean aquaculture industry. In 2016, a live attenuated vaccine (ALPHA JECT LiVac SRS, PHARMAQ AS) was licensed in Chile and has been widely used in farmed salmonids since then. In experimental injection and cohabitation laboratory challenge models, we found that the vaccine is effective in protecting Atlantic salmon () for at least 15 months against -induced mortality.

View Article and Find Full Text PDF

Vaccination against salmon lice () is a means of control that averts the negative effects of chemical approaches. Here, we studied the immunogenicity and protective effect of a vaccine formulation (based on a salmon lice-gut recombinant protein [P33]) against infestation in Atlantic salmon in a laboratory-based trial. Our findings revealed that P33 vaccine can provide a measure of protection against immature and adult salmon lice infestation.

View Article and Find Full Text PDF

Viral disease poses a major barrier to sustainable aquaculture, with outbreaks causing large economic losses and growing concerns for fish welfare. Genomic epidemiology can support disease control by providing rapid inferences on viral evolution and disease transmission. In this study, genomic epidemiology was used to investigate salmonid alphavirus (SAV), the causative agent of pancreas disease (PD) in Atlantic salmon.

View Article and Find Full Text PDF

Understanding the dynamics of pathogen transfer in aquaculture systems is essential to manage and mitigate disease outbreaks. The goal of this study was to understand recent transmission dynamics of salmonid alphavirus (SAV) in Norway. SAV causes significant economic impacts on farmed salmonids in European aquaculture.

View Article and Find Full Text PDF

Infestation with the salmon louse (Copepoda, Caligidae) affects Atlantic salmon ( L.) production in European aquaculture. Furthermore, high levels of salmon lice in farms significantly increase challenge pressure against wild salmon populations.

View Article and Find Full Text PDF

The infectious salmon anaemia virus (ISAV) is an important pathogen on farmed salmon in Europe. The virus occurs as low- and high virulent variants where the former seem to be a continuous source of new high virulent ISAV. The latter are controlled in Norway by stamping out infected populations while the former are spreading uncontrolled among farmed salmon.

View Article and Find Full Text PDF

Several studies have demonstrated that injection of double-stranded RNAs (dsRNA) homologous to mRNA for the white spot syndrome virus (WSSV) viral protein 28 (VP28) can induce protection in shrimp against WSSV through RNA interference (RNAi). In comparison to shrimp injected with either PBS or a green fluorescent protein (GFP) nonspecific dsRNA, we obtained nearly complete protection against WSSV infection in shrimp injected with VP28 dsRNA. Upregulation of host genes associated with small RNA silencing was measured 48 hours post treatment in groups injected with dsRNA, and although the VP28-treated group remained moderately upregulated after challenge with WSSV, many-fold higher induction was observed in both control groups reflecting the ongoing viral infection.

View Article and Find Full Text PDF

Phylogenetic analyses of the Salmonid alphavirus subtype 3 (SAV3) epizootic have suggested that a substitution from proline to serine in the receptor binding protein E2 position 206 has occurred after the introduction of virus from a wild reservoir to farmed salmonid fish in Norway. We modelled the 3D structure of P62, the uncleaved E3-E2 precursor, of SAVH20/03 based on its sequence homology to the Chikungunya virus (CHIKV), and studied in vitro and in vivo effects of the mutation using reverse genetics. E2(206) is located on the surface of the B-domain of E2, which is associated with receptor attachment in alphaviruses.

View Article and Find Full Text PDF

Two Chlamydiales have previously been found to infect Atlantic salmon (Salmo salar L.), Candidatus Piscichlamydia salmonis and Candidatus Clavichlamydia salmonicola. Both develop intracellularly in cyst-like inclusions in gill cells, generally referred to as epitheliocysts.

View Article and Find Full Text PDF

Salmonid alphavirus (SAV) causes infections in farmed Atlantic salmon and rainbow trout in Europe. Genetic diversity exists among SAV strains from farmed fish and six subtypes have been proposed based on genetic distance. Here, we used six full-genome sequences and 71 partial sequences of the structural ORF to estimate the evolutionary rate of SAV.

View Article and Find Full Text PDF

Infectious salmon anaemia virus, ISA virus (genus Isavirus, family Orthomyxoviridae), emerged in Norwegian salmon culture in the mid-80s. The genome consists of eight segments coding for at least 10 proteins. ISA viruses show many of similarities to influenza A viruses but differ in many important aspects such as the number of hosts, the host population structure and the route of transmission.

View Article and Find Full Text PDF

Pancreas disease (PD) in salmonid fish is caused by an infection with Salmonid alphavirus (SAV) and remains as one of the major health problems in the European fish farming industry. Sequence studies have revealed a genetic diversity among viral strains. A subtype of SAV (SAV3) is causing an epizootic in farmed salmonids in Norway.

View Article and Find Full Text PDF

Background: Salmonid alphavirus (SAV) is a widespread pathogen in European aquaculture of salmonid fish. Distinct viral subtypes have been suggested based on sequence comparisons and some of these have different geographical distributions. In Norway, only SAV subtype 3 have so far been identified.

View Article and Find Full Text PDF

Salmonid alphavirus (SAV) is the most divergent member of the family Togaviridae and constitutes a threat to farming of salmonid fish in Europe. Here, we report cloning, expression and preliminary functional analysis of the capsid protein of SAV, confirming it to be expressed as an approximately 31-kDa protein in infected cells. The protein localizes strictly to the cytoplasm in Chinook salmon embryo cells, and either to the nucleus or cytoplasm in bluegill fry cells.

View Article and Find Full Text PDF

Salmonid alphavirus (SAV) causes disease in farmed salmonid fish and is divided into different genetic subtypes (SAV1-6). Here we report the cloning and characterization of the 5'- and 3'- untranslated regions (UTR) of a SAV3 isolated from Atlantic salmon in Norway. The sequences of the UTRs are very similar to those of SAV1 and SAV2, but single nucleotide polymorphisms are present, also in the 3' - conserved sequence element (3'-CSE).

View Article and Find Full Text PDF

The complete RNA genome of the Atlantic salmon paramyxovirus (ASPV), isolated from Atlantic salmon suffering from proliferative gill inflammation (PGI), has been determined. The genome is 16,965 nucleotides in length and consists of six nonoverlapping genes in the order 3'- N - P/C/V - M - F - HN - L -5', coding for the nucleocapsid, phospho-, matrix, fusion, hemagglutinin-neuraminidase and large polymerase proteins, respectively. The gene junctions contain highly conserved transcription start and stop signal sequences and trinucleotide intergenic regions similar to those of other Paramyxoviridae.

View Article and Find Full Text PDF

The phylum Chlamydiae contains obligate intracellular bacteria, several of which cause disease in their hosts. Morphological studies have suggested that this group of bacteria may be pathogens of fish, causing cysts in epithelial tissue - epitheliocystis. Recently, the first genetic evidence of a chlamydial aetiology of this disease in seawater reared Atlantic salmon from Norway and Ireland was presented, and the agent was given the name 'Candidatus Piscichlamydia salmonis'.

View Article and Find Full Text PDF