Liquid-liquid phase separation (LLPS) of scaffold proteins has often been proposed to drive the biogenesis of membraneless cellular compartments. Here, we present a protocol to link in vitro LLPS propensity to localization in vivo. We describe steps for examining LLPS in vitro in the presence of crowding agents or cytomimetic media.
View Article and Find Full Text PDFLiquid-liquid phase separation (LLPS) of putative assembly scaffolds has been proposed to drive the biogenesis of membraneless compartments. LLPS scaffolds are usually identified through in vitro LLPS assays with single macromolecules (homotypic), but the predictive value of these assays remains poorly characterized. Here, we apply a strategy to evaluate the robustness of homotypic LLPS assays.
View Article and Find Full Text PDFThe inner centromere protein, INCENP, is crucial for correct chromosome segregation during mitosis. It connects the kinase Aurora B to the inner centromere allowing this kinase to dynamically access its kinetochore targets. However, the function of its central, 440-residue long intrinsically disordered region (IDR) and its multiple phosphorylation sites is unclear.
View Article and Find Full Text PDFReflecting its pleiotropic functions, Polo-like kinase 1 (PLK1) localizes to various sub-cellular structures during mitosis. At kinetochores, PLK1 contributes to microtubule attachments and mitotic checkpoint signaling. Previous studies identified a wealth of potential PLK1 receptors at kinetochores, as well as requirements for various mitotic kinases, including BUB1, Aurora B, and PLK1 itself.
View Article and Find Full Text PDF