Publications by authors named "Marius Arvinte"

Image reconstruction is the process of recovering an image from raw, under-sampled signal measurements, and is a critical step in diagnostic medical imaging, such as magnetic resonance imaging (MRI). Recently, data-driven methods have led to improved image quality in MRI reconstruction using a limited number of measurements, but these methods typically rely on the existence of a large, centralized database of fully sampled scans for training. In this work, we investigate federated learning for MRI reconstruction using end-to-end unrolled deep learning models as a means of training global models across multiple clients (data sites), while keeping individual scans local.

View Article and Find Full Text PDF

Accelerated multi-coil magnetic resonance imaging reconstruction has seen a substantial recent improvement combining compressed sensing with deep learning. However, most of these methods rely on estimates of the coil sensitivity profiles, or on calibration data for estimating model parameters. Prior work has shown that these methods degrade in performance when the quality of these estimators are poor or when the scan parameters differ from the training conditions.

View Article and Find Full Text PDF