Publications by authors named "Mariuca Vasa"

Background: The maintenance of endothelial integrity plays a critical role in preventing atherosclerotic disease progression. Endothelial progenitor cells (EPCs) were experimentally shown to incorporate into sites of neovascularization and home to sites of endothelial denudation. Circulating EPCs may thus provide an endogenous repair mechanism to counteract ongoing risk factor-induced endothelial injury and to replace dysfunctional endothelium.

View Article and Find Full Text PDF

Even though anthralin is a well-established topical therapeutic agent for psoriasis, little is known about its effects and biochemical mechanisms of signal transduction. In contrast to a previous report, we found that anthralin induced time- and concentration-dependent phosphorylation of epidermal growth factor receptor in primary human keratinocytes. Four lines of evidence show that this process is mediated by reactive oxygen species.

View Article and Find Full Text PDF

Aging is associated with a rise in intracellular reactive oxygen species (ROS) and a loss of telomerase reverse transcriptase activity. Incubation with H2O2 induced the nuclear export of telomerase reverse transcriptase (TERT) into the cytosol in a Src-family kinase-dependent manner. Therefore, we investigated the hypothesis that age-related increase in reactive oxygen species (ROS) may induce the nuclear export of TERT and contribute to endothelial cell senescence.

View Article and Find Full Text PDF

Increasing evidence suggests that postnatal neovascularization involves the recruitment of circulating endothelial progenitor cells (EPCs). Hematopoietic and endothelial cell lineages share common progenitors. Cytokines formerly thought to be specific for the hematopoietic system have only recently been shown to affect several functions in endothelial cells.

View Article and Find Full Text PDF

Endothelial cell (EC) migration is required for angiogenesis, neovascularization, and reendothelialization. Integrins, known as alphabeta-heterodimeric cell-surface receptors, regulate cell migration and are essential for mechanotransduction of hemodynamic forces. Therefore, we investigated the effect of shear stress on EC migration and the contribution of the integrins and integrin-dependent signaling pathways in a scratched-wound assay.

View Article and Find Full Text PDF