Publications by authors named "Marita Overhoff"

Background: Cellular senescence is a stable arrest of proliferation and is considered a key component of processes associated with carcinogenesis and other ageing-related phenotypes. Here, we perform methylome analysis of actively dividing and deeply senescent normal human epithelial cells.

Results: We identify senescence-associated differentially methylated positions (senDMPs) from multiple experiments using cells from one donor.

View Article and Find Full Text PDF

p16 is a key regulator of cellular senescence, yet the drivers of this stable state of proliferative arrest are not well understood. Here, we identify 22 senescence-associated microRNAs (SA-miRNAs) in normal human mammary epithelial cells. We show that SA-miRNAs-26b, 181a, 210 and 424 function in concert to directly repress expression of Polycomb group (PcG) proteins CBX7, embryonic ectoderm development (EED), enhancer of zeste homologue 2 (EZH2) and suppressor of zeste 12 homologue (Suz12), thereby activating p16.

View Article and Find Full Text PDF

In the last decade short interfering RNA (siRNA) became an important means for functional genomics and the development of gene-specific drugs. However, major technical hurdles in the application of siRNA include its cellular delivery followed by its intracellular trafficking and its release in order to enter the RNA interference (RNAi) machinery. The novel phosphorothioate-stimulated cellular uptake of siRNA contrasts other known delivery systems because it involves a caveosomal pathway in which large amounts of siRNA are delivered to the perinuclear environment, leading to measurable though moderate target suppression.

View Article and Find Full Text PDF

The cellular uptake of oligomeric nucleic acid-based tools and drugs including small-interfering RNA (siRNA) represents a major technical hurdle for the biologic effectiveness and therapeutic success in vivo. Subsequent to cellular delivery it is crucial to direct siRNA to the cellular location where it enters the RNA interference pathway. Here the authors summarise evidence that functionally active siRNA represents a minor fraction in the order of 1% of total siRNA inside a given target cell.

View Article and Find Full Text PDF

The relationship between immunostimulation of human B cells by cytosine-phosphate-guanosine (CpG) -containing oligonucleotides and their physical cellular uptake is of mechanistic interest and a prerequisite for rational improvements of the therapeutic potential of CpG-harbouring oligonucleotides. Here, a combinatorial approach was used to identify nucleotide sequence motifs that facilitate increased cellular uptake in mammalian cells. Oligonucleotides harbouring the selected hexanucleotide TCGTGT in cis show increased cellular uptake.

View Article and Find Full Text PDF

The cellular delivery of short interfering RNA (siRNA) is a main hurdle in therapeutic drug development. Here, we describe that phosphorothioate (PTO)-derived oligonucleotides stimulate the physical cellular uptake of siRNA in trans in human cells. This is reflected by an apparent dose-dependent siRNA-mediated suppression of lamin A/C in primary human umbilical vein endothelial cells.

View Article and Find Full Text PDF

The efficiency with which small interfering RNAs (siRNAs) down-regulate specific gene expression in living cells is variable and a number of sequence-governed, biochemical parameters of the siRNA duplex have been proposed for the design of an efficient siRNA. Some of these parameters have been clearly identified to influence the assembly of the RNA-induced silencing complex (RISC), or to favour the sequence preferences of the RISC endonuclease. For other parameters, it is difficult to ascertain whether the influence is a determinant of the siRNA per se, or a determinant of the target RNA, especially its local structural characteristics.

View Article and Find Full Text PDF

The quantitative detection of oligomeric nucleic acids including short double-stranded RNA in cells and tissues becomes increasingly important. Here, we describe a method for the detection of siRNA in extracts prepared from mammalian cells, which is based on liquid hybridization with a 32P-labelled probe followed by a nuclease protection step. The limit of detection of absolute amounts of siRNA is in the order of 10-100 amol.

View Article and Find Full Text PDF