Src-homology (SH3) domain belongs to a class of ubiquitous modular protein domains found in nature. SH3 domains have a conserved surface that recognises proline-rich peptides in ligand proteins, but additional contacts also contribute to binding. Using the SH3 domain of hematopoietic cell kinase as a test case, we show that SH3 binding properties can be profoundly altered by modifications within a hexapeptide sequence in the RT-loop region that is not involved in recognition of currently known consensus SH3 target peptides.
View Article and Find Full Text PDFWe have determined the human genome to contain 296 different Src homology-3 (SH3) domains and cloned them into a phage-display vector. This provided a powerful and unbiased system for simultaneous assaying of the complete human SH3 proteome for the strongest binding to target proteins of interest, without the limitations posed by short linear peptide ligands or confounding variables of more indirect methods for protein interaction screening. Studies involving three ligand proteins, human immunodeficiency virus-1 Nef, p21-activated kinase (PAK)2 and ADAM15, showed previously reported as well as novel SH3 partners with nanomolar affinities specific for them.
View Article and Find Full Text PDFThe simian immunodeficiency virus (SIV) Nef protein contains a consensus Src-homology 3 (SH3) binding motif. However, no SH3-domain proteins showing strong binding to SIV Nef have yet been found, and its potential capacity for high-affinity SH3 binding has therefore remained unproven. Here we have used phage-display-assisted protein engineering to develop artificial SH3 domains that bind tightly to SIV strain mac (SIVmac) Nef.
View Article and Find Full Text PDF