Publications by authors named "Marit M van Buuren"

New treatment approaches are warranted for patients with advanced melanoma refractory to immune checkpoint blockade (ICB) or BRAF-targeted therapy. We designed BNT221, a personalized, neoantigen-specific autologous T cell product derived from peripheral blood, and tested this in a 3 + 3 dose-finding study with two dose levels (DLs) in patients with locally advanced or metastatic melanoma, disease progression after ICB, measurable disease (Response Evaluation Criteria in Solid Tumors version 1.1) and, where appropriate, BRAF-targeted therapy.

View Article and Find Full Text PDF

Oncogenic mutations in KRAS can be recognized by T cells on specific class I human leukocyte antigen (HLA-I) molecules, leading to tumor control. To date, the discovery of T cell targets from KRAS mutations has relied on occasional T cell responses in patient samples or the use of transgenic mice. To overcome these limitations, we have developed a systematic target discovery and validation pipeline.

View Article and Find Full Text PDF
Article Synopsis
  • Many methods for identifying neoantigens rely on tumor sequencing paired with bioinformatics, but there's a lack of reference data and clarity on what makes tumor epitopes immunogenic.
  • A global consortium was formed to predict immunogenic epitopes from shared tumor sequencing, leading to the assessment of 608 epitopes for T cell binding in patient samples.
  • A new model for tumor epitope immunogenicity was created, which was able to accurately filter out non-immunogenic peptides and improve prediction performance, providing valuable data for understanding anti-tumor immunity.
View Article and Find Full Text PDF

Background: The ongoing COVID-19 pandemic has created an urgency to identify novel vaccine targets for protective immunity against SARS-CoV-2. Early reports identify protective roles for both humoral and cell-mediated immunity for SARS-CoV-2.

Methods: We leveraged our bioinformatics binding prediction tools for human leukocyte antigen (HLA)-I and HLA-II alleles that were developed using mass spectrometry-based profiling of individual HLA-I and HLA-II alleles to predict peptide binding to diverse allele sets.

View Article and Find Full Text PDF

Unlabelled: Treatment of metastatic melanoma with autologous tumor infiltrating lymphocytes (TILs) is currently applied in several centers. Robust and remarkably consistent overall response rates, of around 50% of treated patients, have been observed across hospitals, including a substantial fraction of durable, complete responses.

Purpose: Execute a phase I/II feasibility study with TIL therapy in metastatic melanoma at the Netherlands Cancer Institute, with the goal to assess feasibility and potential value of a randomized phase III trial.

View Article and Find Full Text PDF

To increase cancer immunotherapy success, PD-1 blockade must be combined with rationally selected treatments. Here, we examined, in a poorly immunogenic mouse breast cancer model, the potential of antibody-based immunomodulation and conventional anticancer treatments to collaborate with anti-PD-1 treatment. One requirement to improve anti-PD-1-mediated tumor control was to promote tumor-specific cytotoxic T-cell (CTL) priming, which was achieved by stimulating the CD137 costimulatory receptor.

View Article and Find Full Text PDF

Recognition of neoantigens that are formed as a consequence of DNA damage is likely to form a major driving force behind the clinical activity of cancer immunotherapies such as T-cell checkpoint blockade and adoptive T-cell therapy. Therefore, strategies to selectively enhance T-cell reactivity against genetically defined neoantigens are currently under development. In mouse models, T-cell pressure can sculpt the antigenicity of tumours, resulting in the emergence of tumours that lack defined mutant antigens.

View Article and Find Full Text PDF
Article Synopsis
  • Research indicates that effective cancer immunotherapies rely on T cell responses to mutations in cancer DNA, known as neoantigens.
  • Despite many potential neoantigens, only a few are recognized by a patient's own T cells, highlighting the need for strategies to enhance these responses.
  • Healthy donors' T cells have shown the ability to respond to specific neoantigens from patients, suggesting that using these donor-derived T cells could improve cancer treatments by targeting melanoma cells with the relevant mutations.
View Article and Find Full Text PDF

Tumor infiltrating lymphocyte (TIL) therapy has shown objective clinical response rates of 50% in stage IV melanoma patients in a number of clinical trials. Nevertheless, the majority of patients progress either directly upon therapy or after an initial period of tumor control. Recent data have shown that most TIL products that are used for therapy contain only low frequencies of T cells reactive against known melanoma-associated epitopes.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic hepatitis C (cHCV) infection disrupts the balance of immune cells, particularly affecting naïve CD8(+) T cells.
  • Although precursor frequencies of these cells are normal in cHCV patients, there is an increase in memory-phenotype inexperienced cells compared to healthy individuals or those cured of HCV.
  • The study identifies low CD5 expression as a factor leading to enhanced T cell receptor signaling and stronger immune responses, highlighting a new way that chronic infections can disturb immune function.
View Article and Find Full Text PDF

Antibodies against T cell checkpoint molecules have started to revolutionize cancer treatment. Nevertheless, less than half of all patients respond to these immunotherapies. Recent work supports the potential value of biomarkers that predict therapy outcome and inspires the development of assay systems that interrogate other aspects of the cancer-immunity cycle.

View Article and Find Full Text PDF

Tumor-specific neo-antigens that arise as a consequence of mutations are thought to be important for the therapeutic efficacy of cancer immunotherapies. Accumulating evidence suggests that neo-antigens may be commonly recognized by intratumoral CD8+ T cells, but it is unclear whether neo-antigen-specific CD4+ T cells also frequently reside within human tumors. In view of the accepted role of tumor-specific CD4+ T-cell responses in tumor control, we addressed whether neo-antigen-specific CD4+ T-cell reactivity is a common property in human melanoma.

View Article and Find Full Text PDF

Recent data suggest that T-cell reactivity against tumor-specific neo-antigens may be central to the clinical efficacy of cancer immunotherapy. The development of personalized vaccines designed to boost T-cell reactivity against patient specific neo-antigens has been proposed largely on the basis of these findings. Work from several groups has demonstrated that novel tumor-specific antigens can be discovered through the use of cancer exome sequencing data, thereby providing a potential pipeline for the development of patient-specific vaccines.

View Article and Find Full Text PDF

Peptide-MHC (pMHC) multimers have become one of the most widely used tools to measure Ag-specific T cell responses in humans. With the aim of understanding the requirements for pMHC-based personalized immunomonitoring, in which individuals expressing subtypes of the commonly studied HLA alleles are encountered, we assessed how the ability to detect Ag-specific T cells for a given peptide is affected by micropolymorphic differences between HLA subtypes. First, analysis of a set of 10 HLA-A*02:01-restricted T cell clones demonstrated that staining with pMHC multimers of seven distinct subtypes of the HLA-A*02 allele group was highly variable and not predicted by sequence homology.

View Article and Find Full Text PDF

All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures.

View Article and Find Full Text PDF

Cytotoxic T-cells can recognize antigens that are presented on the surface of human tumor cells and thereby mediate cancer regression. Importantly, those immune interventions that have thus far proven most successful in the clinic-i.e.

View Article and Find Full Text PDF

There is strong evidence that both adoptive T cell transfer and T cell checkpoint blockade can lead to regression of human melanoma. However, little data are available on the effect of these cancer therapies on the tumor-reactive T cell compartment. To address this issue we have profiled therapy-induced T cell reactivity against a panel of 145 melanoma-associated CD8(+) T cell epitopes.

View Article and Find Full Text PDF