Publications by authors named "Marit E Hystad"

Our aim was to examine the genetics of clonal evolution in follicular lymphoma (FL) and to identify genetic alterations associated with disease progression. A total of 100 biopsies from 44 patients diagnosed with t(14;18)-positive FL were examined by array comparative genomic hybridization. In 20 patients the patterns of somatic hypermutations (SHMs) in the variable region of heavy chain gene were additionally analyzed.

View Article and Find Full Text PDF

The bone marrow microenvironment regulates early B lymphopoiesis and protects leukemia cells against chemotherapy treatment, thus the microenvironment may serve as a sanctuary site for these cells. Yet, few factors that contribute to this process are known. We have explored the role of transforming growth factor beta (TGFbeta) and bone morphogenetic protein-6 (BMP-6) and one target gene, TGFbeta inducible early gene 1 (TIEG1), in the communication between stroma cells and acute lymphoblastic leukemia (ALL) cell lines and their escape from chemotherapy.

View Article and Find Full Text PDF

Bone morphogenetic proteins (BMP) are multifunctional cytokines that belong to the TGF-beta superfamily. BMP have been shown to regulate haematopoietic stem cells, B lymphopoiesis and early thymocyte differentiation. In the present study we explored the role of BMP-6 in Jurkat TAg cells.

View Article and Find Full Text PDF

We have characterized several stages of normal human B cell development in adult bone marrow by gene expression profiling of hemopoietic stem cells, early B (E-B), pro-B, pre-B, and immature B cells, using RNA amplification and Lymphochip cDNA microarrays (n = 6). Hierarchical clustering of 758 differentially expressed genes clearly separated the five populations. We used gene sets to investigate the functional assignment of the differentially expressed genes.

View Article and Find Full Text PDF

Acute lymphoblastic leukaemia (ALL) is the most common malignancy in children. Recently, there has been a growing interest in Wnt signalling in several aspects of cellular development, including cancer formation. Little is known about Wnt signalling in B-ALL.

View Article and Find Full Text PDF

Erythropoietin (Epo) is the major regulator of differentiation, proliferation and survival of erythroid progenitors, but the Epo-induced changes in gene expression that lead to these effects are not fully understood. The aim of this study was to examine how Epo, via activation of phosphatidylinositol 3-kinase (PI3K)/Akt, exerts its role in the development of erythroid progenitors from CD34+ cells, and to identify early Epo target genes in human erythroid progenitors. In CD34+ progenitor cells, Epo alone was able to induce cell cycle progression as demonstrated by upregulation of cyclin D3, E and A leading to hyperphosphorylation of the retinoblastoma protein (RB).

View Article and Find Full Text PDF

Objective: In mammals, factors produced by bone marrow (BM) stromal cells are instrumental in orchestrating the developmental process of B lymphocytes. Bone morphogenetic proteins (BMPs) are multifunctional cytokines previously found to regulate hematopoietic stem cells. In the present study, we have explored the role of BMP-6 in human B progenitor cells.

View Article and Find Full Text PDF

Background: Bone morphogenetic proteins (BMPs) belong to the TGF-beta superfamily and are secreted proteins with pleiotropic roles in many different cell types. A potential role of BMP-6 in the immune system has been implied by various studies of malignant and rheumatoid diseases. In the present study, we explored the role of BMP-6 in normal human peripheral blood B cells.

View Article and Find Full Text PDF

5-HT4 receptor pre-mRNA is alternatively spliced in human (h) tissue to produce several splice variants, called 5-HT4(a) to 5-HT4(h) and 5-HT4(n). Polymerase chain reaction (PCR) with primers designed to amplify both 5-HT4(a) and 5-HT4(b) amplified three additional bands in different tissues, two representing different mRNA species both encoding 5-HT4(g) and one representing mRNA for a novel splice variant named 5-HT4(i), cloned from testis and pancreas respectively. Primary and nested PCR detected both 5-HT4(g) and 5-HT4(i) in multiple tissues.

View Article and Find Full Text PDF