The identification of the hormones and other factors regulating Sertoli cell survival, proliferation, and maturation in neonatal, peripubertal, and pubertal life remains one of the most critical questions in testicular biology. The regulation of Sertoli cell proliferation and differentiation is thought to be controlled by cell-cell junctions and a set of circulating and local hormones and growth factors. In this review, we will focus on receptors and intracellular signaling pathways activated by androgen, follicle-stimulating hormone, thyroid hormone, activin, retinoids, insulin, insulin-like growth factor, relaxin, and estrogen, with special emphasis on estrogen receptors.
View Article and Find Full Text PDFSpermatogenesis is controlled by FSH, testosterone and paracrine factors produced by Sertoli cells. The knockout of relaxin decreases sperm maturation in mice. Studies from our laboratory have shown that relaxin and its receptor RXFP1 are expressed in rat Sertoli cells, and exogenous relaxin stimulates Sertoli cell proliferation.
View Article and Find Full Text PDFImmature Sertoli cells proliferate and several factors affect their number, including the follicle stimulating hormone (FSH), testosterone, estradiol and several paracrine growth factors. Using a primary culture of Sertoli cells isolated from 15-day old Wistar rats we have shown that relaxin stimulates Sertoli cell proliferation through the activation of MEK/ERK1/2 and PI3K/AKT pathways. In contrast, FSH inhibited both ERK1/2 and AKT phosphorylation.
View Article and Find Full Text PDFRegulation of Sertoli cell number is a key event to determine normal spermatogenesis. We have previously shown that relaxin and its G-protein coupled receptor RXFP1 are expressed in rat Sertoli cells, and that relaxin stimulates Sertoli cell proliferation. This study examined the mechanisms underlying the mitogenic effect of relaxin in a primary culture of Sertoli cells removed from testes of immature rats.
View Article and Find Full Text PDFIn this review, we will present an overview of estrogen actions in the testis from immature and adult animals, with special emphasis on signaling mechanisms involved in the 17β-estradiol regulation of Sertoli cell function in immature rats. 17β-estradiol activates Sertoli cell proliferation in immature rats by a mechanism that involves the translocation of the estrogen receptors ESR1 and ESR2 to the plasma membrane, phosphorylation of epidermal growth factor receptor and activation of mitogen-activated protein kinase 3/1. Activation of the G protein-coupled estrogen receptor (GPER) also induces phosphorylation of mitogen-activated protein kinase 3/1 via epidermal growth factor receptor transactivation, which in turn increases expression of the antiapoptotic protein BCL2 and decreases the expression of proapoptotic protein BAX, indicating an antiapoptotic role of E2-GPER in immature rat Sertoli cells.
View Article and Find Full Text PDFBackground: Relaxin is the endogenous ligand of the G-protein coupled receptor RXFP1, previously known as LGR7. In humans relaxin can also activate, but with lower affinity, the closely related receptor for the insulin-like peptide from Leydig cells, RXFP2, previously known as LGR8. The lack of relaxin impairs male fertility but the precise distribution and the function of relaxin receptors in the male reproductive tract is not known.
View Article and Find Full Text PDFFollicle-stimulating hormone (FSH) and luteinizing hormone (LH) control gonadal function in mammalian and many non-mammalian vertebrates through the interaction with their receptors, FSHR and LHR. Although the same is true for some reptilian species, in Squamata (lizards and snakes) there is no definitive evidence for the presence of either two distinct gonadotropins or two distinct gonadotropin receptors. Our aim was to characterize the gonadotropin receptor(s) of the Bothrops jararaca snake.
View Article and Find Full Text PDF