Publications by authors named "Maristela D Orellana"

Mesenchymal stem cells can differentiate into specific cell lineages in the tissue repair process. Photobiomodulation with laser and LED is used to treat several comorbidities, can interfere in cell proliferation and viability, in addition to promoting responses related to the physical parameters adopted. Evaluate and compare the effects of laser and LED on mesenchymal cells, with different energy doses and different wavelengths, in addition to viability and wound closure.

View Article and Find Full Text PDF

Investigating the effect of different parameters of photobiomodulation (PBM) with low-power laser on multi-potent mesenchymal stem cells (MSCs) derived from adipose tissue in terms of proliferation and cell death. MSCs were submitted to PBM applications with combinations of the following physical parameters: control group (no intervention), wavelengths of 660 and 830 nm; energy of 0.5, 2, and 4 J; and power of 40 and 100 mW.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) have shown increasing therapeutic potential in the last years. However, large production of EV is required for therapeutic purposes. Thereby, scaling up MSC cultivation in bioreactors is essential to allow culture parameters monitoring.

View Article and Find Full Text PDF

Background: Steroid-refractory acute graft-vs.-host disease (SR-aGVHD) is a complication of allogeneic hematopoietic stem cell transplantation with a dismal prognosis and for which there is no consensus-based second-line therapy. Ruxolitinib is not easily accessible in many countries.

View Article and Find Full Text PDF

Menstrual blood mesenchymal stem cells (MenSCs) have gained prominence in the endometriosis scientific community, given their multifunctional roles in regenerative medicine as a noninvasive source for future clinical applications. In addition, changes in post-transcriptional regulation via miRNAs have been explored in endometriotic MenSCs with a role in modulating proliferation, angiogenesis, differentiation, stemness, self-renewal, and the mesenchymal-epithelial transition process. In this sense, homeostasis of the miRNA biosynthesis pathway is essential for several cellular processes and is related to the self-renewal and differentiation of progenitor cells.

View Article and Find Full Text PDF

Given the importance of menstrual blood in the pathogenesis of endometriosis and the multifunctional roles of menstrual mesenchymal stem cells (MenSCs) in regenerative medicine, this issue has gained prominence in the scientific community. Moreover, recent reviews highlight how robust the integrated assessment of omics data are for endometriosis. To our knowledge, no study has applied the multi-omics approaches to endometriosis MenSCs.

View Article and Find Full Text PDF

CAR-T cell therapies have been recognized as one of the most advanced and efficient strategies to treat patients with hematologic malignancies. However, similar results have not been observed for the treatment of solid tumors. One of the explanations is the fact that tumors have extremely hostile microenvironments for the infiltration and effector activity of T-cells, mainly due to the presence of highly suppressive cytokines, hypoxia, and reactive oxygen species.

View Article and Find Full Text PDF

The key relationship between Sampson's theory and the presence of mesenchymal stem cells in the menstrual flow (MenSCs), as well as the changes in post-transcriptional regulatory processes as actors in the etiopathogenesis of endometriosis, are poorly understood. No study to date has investigated the imbalance of miRNAs in MenSCs related to the disease. Thus, through literature and in silico analyses, we selected four predicted miRNAs as regulators of EGR1, SNAI1, NR4A1, NR4A2, ID1, LAMC3, and FOSB involved in pathways of apoptosis, angiogenesis, response to steroid hormones, migration, differentiation, and cell proliferation.

View Article and Find Full Text PDF

The adherence to accreditation programs proves the institutions' voluntary effort to pursue the quality and safety of their products and services by meeting internationally accepted standards audited by experts in the field, external to the service. Meeting such standards often exceeds domestic legal requirements. However, service providers are not released from complying with the legal requirements, both local and international, pertinent to the field.

View Article and Find Full Text PDF

Chimeric antigen receptor T cells (CAR-T), especially against CD19 marker, present in lymphomas and acute B leukemia, enabled a revolution in the treatment of hematologic neoplastic diseases. The manufacture of CAR-T cells requires the adoption of GMP-compatible methods and it demands the collection of mononuclear cells from the patient (or from the donor), generally through the apheresis procedure, T cell selection, activation, transduction and expansion ex vivo, and finally storage, usually cryopreserved, until the moment of their use. An important aspect is the quality control testing of the final product, for example, the characterization of its identity and purity, tests to detect any contamination by microorganisms (bacteria, fungi, and mycoplasma) and its potency.

View Article and Find Full Text PDF

The mechanisms underlying the propensity of melanomas to metastasize are not completely understood. We hypothesized that melanoma cells are capable of promptly activating an epithelial-to-mesenchymal transition (EMT)-like profile in response to stroma-derived factors. Thus, we investigated the role of mesenchymal stromal cells (MSCs), a cell population considered as a precursor of tumor stroma, on the activation of an EMT-like profile and acquisition of metastatic traits in melanoma cells.

View Article and Find Full Text PDF

Introduction: Sickle cell disease (SCD) is a monogenic disease and it is estimated that 300,000 infants are born annually with it. Most treatments available are only palliative, whereas the allogeneic hematopoietic stem cell transplantation offers the only potential cure for SCD.

Objective: Generation of human autologous cells, when coupled with induced pluripotent stem cell (iPSC) technology, is a promising approach for developing study models.

View Article and Find Full Text PDF

Background: New regenerative treatments have emerged with the use of multipotent mesenchymal cells, with special interest in adipose-derived stem cells (ADSCs). In recent years, studies that have sought to identify possible quantitative or qualitative differences in ADSCs derived from different donor subcutaneous adipose tissue have shown divergent results making the determination of a preferential donor area still considered inconclusive.

Materials And Methods: The number of ADSCs present in the adipose tissue collected by liposuction was quantified between five different body areas from 17 women, by means of the CFU-F assay and to investigate possible qualitative differences in the ADSCs from these different areas by analyzing: cell surface markers, cell kinetics, action of the supernatant produced by ADSCs from different body areas on fibroblast migration and, finally, differences in the secretome present in the supernatant produced by these cells.

View Article and Find Full Text PDF

Human multipotent mesenchymal stromal cells (MSCs) display immunoregulatory functions that can modulate innate and adaptive cellular immune responses. The suppressive and immunomodulatory activities of MSCs occur through the action of soluble factors that are constitutively produced and released by these cells or, alternatively, after MSC induction by stimuli of inflammatory microenvironments. However, to date the contribution of MSCs in the inflammatory microenvironment resulting from viral infection is unknown.

View Article and Find Full Text PDF

The bone marrow (BM) biology during HTLV-1 infection is obscure. In this study, we investigated BM mononuclear cells and mesenchymal stromal cells (MSC) from HTLV-1 asymptomatic and symptomatic individuals. An infiltration of CD4 T-cell lymphocytes in the BM of HTLV-1-infected individuals was observed when compared to healthy controls.

View Article and Find Full Text PDF

The purpose of the present study was to evaluate the neural protein expression pattern of human multipotent mesenchymal stromal cells (hMSCs) treated with forskolin (free-form/FF). The study investigated forskolin's capacity to enhance intracellular levels of cyclic adenosine monophosphate (cAMP) by activating adenylate cyclase and probably by inducing neuron-like cells in vitro. In addition, because nanotechnology is a growing field of tissue engineering, we also assessed the action of a new system called the nanostructured-forskolin (NF) to examine the improvement of drug delivery.

View Article and Find Full Text PDF

Choosing the culture system and culture medium used to produce cells are key steps toward a safe, scalable, and cost-effective expansion bioprocess for cell therapy purposes. The use of AB human serum (AB HS) as an alternative xeno-free supplement for mesenchymal stromal cells (MSC) cultivation has increasingly gained relevance due to safety and efficiency aspects. Here we have evaluated different scalable culture systems to produce a meaningful number of umbilical cord matrix-derived MSC (UCM MSC) using AB HS for culture medium supplementation during expansion and cryopreservation to enable a xeno-free bioprocess.

View Article and Find Full Text PDF

Background: So far, using human blood-derived components appears to be the most efficient and safest approach available for mesenchymal stromal cell (MSC) expansion. In this paper, we report on the characterization of human AB serum (AB HS) produced by using different plasma sources, and its use as an alternative supplement to MSC expansion.

Methods: Two plasma sources were used for AB HS production: plasma removed from whole blood after 24 h of collection (PC > 24 h) and plasma, cryoprecipitate reduced (PCryoR).

View Article and Find Full Text PDF

During the early thymus colonization, Notch signaling activation on hematopoietic progenitor cells (HPCs) drives proliferation and T cell commitment. Although these processes are driven by transcription factors such as HOXB4 and GATA3, there is no evidence that Notch directly regulates their transcription. To evaluate the role of NOTCH and TNF signaling in this process, human CD34 HPCs were cocultured with OP9-DL1 cells, in the presence or absence of TNF.

View Article and Find Full Text PDF

Multipotent mesenchymal stromal cells (MSC) are imbued with an immunosuppressive phenotype that extends to several immune system cells. In this study, we evaluated how distinct Toll-like receptor (TLR) agonists impact immunosuppressive properties of bone marrow (BM)-MSC and explored the potential mechanisms involved. We show that TLR4 stimulation by lipopolysaccharide (LPS) restricted the ability of MSC to suppress the proliferation of T lymphocytes, increasing the gene expression of interleukin (IL)-1β and IL-6.

View Article and Find Full Text PDF

Mesenchymal stem or stromal cells (MSCs) are of great interest in biomedical sciences and disease treatment because of their multipotency and wide range of applications for tissue repair and suppression of the immune system. Proteomic analysis of these unique cells has contributed to the identification of important pathways utilized by MSCs to differentiate into distinct tissues as well as important proteins responsible for their special function in vivo and in vitro. However, comparison of proteomic studies in MSCs still suffers from the heterogeneity of MSC preparations.

View Article and Find Full Text PDF

Background Aims: For patients with aplastic anemia (AA) who are refractory to anti-thymocyte globulin (ATG) and cyclosporine, a second course of immunosuppression is successful in only one-fourth to one-third of cases.

Methods: We conducted a phase 1/2 study to evaluate the addition of two to five weekly intravenous infusions of allogeneic unrelated non-human leukocyte antigen-matched bone marrow-derived mesenchymal stromal cells (MSCs) (median, 2.7 × 10(6) cells/kg/infusion; range, 1.

View Article and Find Full Text PDF

Hematopoietic cells (HCs) and endothelial cells (ECs) can be produced in vitro from human embryonic stem cells (hESCs), but the differentiation systems used are still inefficient. To overcome this obstacle, it is necessary to understand the differentiation process. One of the methods used to obtain HCs and ECs from hESCs is their co-culture with stromal cells.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmftocl6gbu55iu1g6nagpend4ldkur10): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once