Publications by authors named "Marissa N Lavagnino"

Quaternary carbon centers are desirable targets for drug discovery and complex molecule synthesis, yet the synthesis of these motifs within traditional cross-coupling paradigms remains a significant challenge due to competing β-hydride elimination pathways. In contrast, the bimolecular homolytic substitution (S2) mechanism offers a unique and attractive alternative pathway. Metal porphyrin complexes have emerged as privileged catalysts owing to their ability to selectively form primary metal-alkyl complexes, thereby eliminating the challenges associated with tertiary alkyl complexation with a metal center.

View Article and Find Full Text PDF
Article Synopsis
  • A novel method for deoxyfluorination of various alcohols using a nontrigonal phosphorus triamide allows for the activation of alcohols without a base.
  • This process incorporates an organic soluble fluoride donor and a triarylborane fluoride shuttling catalyst to facilitate the reaction.
  • The study also shows that this method expands on current deoxyfluorination techniques, allowing for the creation of homochiral secondary and tertiary alkylfluorides through stereoinversion of the original alcohol.
View Article and Find Full Text PDF

A synthetic method for the reductive transformation of nitroarenes into -aminated and -annulated products is reported. The method operates via the exhaustive deoxygenation of nitroarenes by an organophosphorus catalyst and a mild terminal reductant to access aryl nitrenes, which after ring expansion, are trapped by amine nucleophiles to give dearomatized 2-amino-3-azepines. Treatment of these ring-expanded intermediates with acyl electrophiles triggers 6π electrocyclization to extrude the nitrogen atom and restore aromaticity of the phenyl ring, which delivers via C-H functionalization 2-aminoanilide and benzimidazole products.

View Article and Find Full Text PDF

The merger of photoredox catalysis with transition metal catalysis, termed metallaphotoredox catalysis, has become a mainstay in synthetic methodology over the past decade. Metallaphotoredox catalysis has combined the unparalleled capacity of transition metal catalysis for bond formation with the broad utility of photoinduced electron- and energy-transfer processes. Photocatalytic substrate activation has allowed the engagement of simple starting materials in metal-mediated bond-forming processes.

View Article and Find Full Text PDF

Bimolecular homolytic substitution (S2) is an open-shell mechanism that is implicated across a host of biochemical alkylation pathways. Surprisingly, however, this radical substitution manifold has not been generally deployed as a design element in synthetic C–C bond formation. We found that the S2 mechanism can be leveraged to enable a biomimetic sp-sp cross-coupling platform that furnishes quaternary sp-carbon centers, a long-standing challenge in organic molecule construction.

View Article and Find Full Text PDF

The copper-catalyzed arylation of unsaturated nitrogen heterocycles, known as the Ullmann-Goldberg coupling, is a valuable transformation for medicinal chemists, providing a modular disconnection for the rapid diversification of heteroaromatic cores. The utility of the coupling, however, has established limitations arising from a high-barrier copper oxidative addition step, which often necessitates the use of electron-rich ligands, elevated temperatures, and/or activated aryl electrophiles. Herein, we present an alternative aryl halide activation strategy, in which the critical oxidative addition (OA) mechanism has been replaced by a halogen abstraction-radical capture (HARC) sequence that allows the generation of the same Cu(III)-aryl intermediate albeit via a photoredox pathway.

View Article and Find Full Text PDF