Desmosine (Des) and isodesmosine (Isodes), cross-linking amino acids in the biomolecule elastin, may be used as biomarkers for various pathological conditions associated with elastin degradation. The current study presents a novel approach to quantify Des and Isodes using matrix-assisted laser desorption ionization (MALDI)-tandem mass spectrometry (MS) in a linear ion trap coupled to a vacuum MALDI source. MALDI-MS analyses of Des and Isodes are performed using stable-isotope-labeled desmosine d (labeled-Des) as an internal standard in different biological fluids, such as urine and serum.
View Article and Find Full Text PDFRationale: Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry combined with isotope labeling methods are effective for protein and peptide quantification, but limited in their multiplexing capacity, cost-effectiveness and dynamic range. This study investigates MALDI-MS-based quantification of peptide phosphorylation without labeling, and aims to overcome the shot-to-shot variability of MALDI using a mathematical transformation and extended data acquisition times.
Methods: A linear relationship between the reciprocal of phosphopeptide mole fraction and the reciprocal of phosphorylated-to-unphosphorylated signal ratio is derived, and evaluated experimentally using three separate phosphopeptide systems containing phosphorylated serine, threonine and tyrosine residues: mixtures of phosphopeptide and its des-phospho-analog with known stoichiometry measured by vacuum MALDI-linear ion trap mass spectrometry and fit to the linear model.