Publications by authors named "Marissa G Saunders"

The endosomal sorting complexes required for transport (ESCRT) proteins mediate fundamental membrane remodeling events that require stabilizing negative membrane curvature. These include endosomal intralumenal vesicle formation, HIV budding, nuclear envelope closure, and cytokinetic abscission. ESCRT-III subunits perform key roles in these processes by changing conformation and polymerizing into membrane-remodeling filaments.

View Article and Find Full Text PDF

Actin performs its myriad cellular functions by the growth and disassembly of its filamentous form. The hydrolysis of ATP in the actin filament has been shown to modulate properties of the filament, thus making it a pivotal regulator of the actin life cycle. Actin has evolved to selectively hydrolyze ATP in the filamentous form, F-actin, with an experimentally observed rate increase over the monomeric form, G-actin, of 4.

View Article and Find Full Text PDF

Iterative procedures for optimizing properties of molecular models often converge slowly owing to the computational cost of accurately representing features of interest. Here, we introduce a preconditioning scheme that allows one to use a less expensive model to guide exploration of the energy landscape of a more expensive model and thus speed the discovery of locally stable states of the latter. We illustrate our approach in the contexts of energy minimization and the string method for finding transition pathways.

View Article and Find Full Text PDF

Actin, a highly conserved cytoskeletal protein found in all eukaryotic cells, facilitates cell motility and membrane remodeling via a directional polymerization cycle referred to as treadmilling. The nucleotide bound at the core of each actin subunit regulates this process. Although the biochemical kinetics of treadmilling has been well characterized, the atomistic details of how the nucleotide affects polymerization remain to be definitively determined.

View Article and Find Full Text PDF

Coarse-graining a molecular model is the process of integrating over degrees of freedom to obtain a reduced representation. This process typically involves two separate but related steps, selection of the coordinates comprising the reduced system and modeling their interactions. Both the coordinate selection and the modeling procedure present challenges.

View Article and Find Full Text PDF

Connecting the molecular world to biology requires understanding how molecular-scale dynamics propagate upward in scale to define the function of biological structures. To address this challenge, multiscale approaches, including coarse-graining methods, become necessary. We discuss here the theoretical underpinnings and history of coarse-graining and summarize the state of the field, organizing key methodologies based on an emerging paradigm for multiscale theory and modeling of biomolecular systems.

View Article and Find Full Text PDF

The actin regulatory protein cofilin plays a central role in actin assembly dynamics by severing filaments and increasing the concentration of ends from which subunits add and dissociate. Cofilin binding modifies the average structure and mechanical properties of actin filaments, thereby promoting fragmentation of partially decorated filaments at boundaries of bare and cofilin-decorated segments. Despite extensive evidence for cofilin-dependent changes in filament structure and mechanics, it is unclear how the two processes are linked at the molecular level.

View Article and Find Full Text PDF

Experiments have shown that actin is structurally polymorphic, but knowledge of the details of molecular level heterogeneity in both the dynamics of a single subunit and the interactions between subunits is still lacking. Here, using atomistic molecular dynamics simulations of the actin filament, we identify domains of atoms that move in a correlated fashion, quantify interactions between these domains using coarse-grained (CG) analysis methods, and perform CG simulations to explore the importance of filament heterogeneity. The persistence length and torsional stiffness calculated from molecular dynamics simulation data agree with experimental values.

View Article and Find Full Text PDF

The interconversion of actin between monomeric and polymeric forms is a fundamental process in cell biology that is incompletely understood, in part because there is no high-resolution structure for filamentous actin. Several models have been proposed recently; identifying structural and dynamic differences between them is an essential step toward understanding actin dynamics. We compare three of these models, using coarse-grained analysis of molecular dynamics simulations to analyze the differences between them and evaluate their relative stability.

View Article and Find Full Text PDF

Multiscale models are important tools to elucidate how small changes in local subunit conformations may propagate to affect the properties of macromolecular complexes. We review recent advances in coarse-graining methods for poly-protein assemblies, systems that are composed of many copies of relatively few components, with a particular focus on viral capsids and cytoskeletal filaments. These methods are grouped into two broad categories-mapping methods, which use information from one scale of representation to parameterize a lower resolution model, and bridging methods, which repeatedly connect different scales during simulation-and we provide examples of both classes at different levels of complexity.

View Article and Find Full Text PDF

The computational study of large biomolecular complexes (molecular machines, cytoskeletal filaments, etc.) is a formidable challenge facing computational biophysics and biology. To achieve biologically relevant length and time scales, coarse-grained (CG) models of such complexes usually must be built and employed.

View Article and Find Full Text PDF

In the monomeric actin crystal structure, the positions of a highly organized network of waters are clearly visible within the active site. However, the recently proposed models of filamentous actin (F-actin) did not extend to including these waters. Since the water network is important for ATP hydrolysis, information about water position is critical to understanding the increased rate of catalysis upon filament formation.

View Article and Find Full Text PDF

Human carbonic anhydrase II (HCA II), among the fastest enzymes known, catalyzes the reversible hydration of CO 2 to HCO 3 (-). The rate-limiting step of this reaction is believed to be the formation of an intramolecular water wire and transfer of a proton across the active site cavity from a zinc-bound solvent to a proton shuttling residue (His64). X-ray crystallographic studies have shown this intramolecular water wire to be directly stabilized through hydrogen bonds via a small well-defined set of amino acids, namely, Tyr7, Asn62, Asn67, Thr199, and Thr200.

View Article and Find Full Text PDF