The vacuolar H-ATPase is a multisubunit enzyme which plays an essential role in the acidification and functions of lysosomes, endosomes, and synaptic vesicles. Many genes encoding subunits of V-ATPases, namely and , have been associated with neurodevelopmental disorders and epilepsy. The autosomal dominant p.
View Article and Find Full Text PDFWhile persistence of fear memories is essential for survival, a failure to inhibit fear in response to harmless stimuli is a feature of anxiety disorders. Extinction training only temporarily suppresses fear memory recovery in adults, but it is highly effective in juvenile rodents. Maturation of GABAergic circuits, in particular of parvalbumin-positive (PV) cells, restricts plasticity in the adult brain, thus reducing PV cell maturation could promote the suppression of fear memories following extinction training in adults.
View Article and Find Full Text PDFBackground: Parvalbumin (PV)-positive GABAergic (gamma-aminobutyric acidergic) cells provide robust perisomatic inhibition to neighboring pyramidal neurons and regulate brain oscillations. Alterations in PV interneuron connectivity and function in the medial prefrontal cortex have been consistently reported in psychiatric disorders associated with cognitive rigidity, suggesting that PV cell deficits could be a core cellular phenotype in these disorders. The p75 neurotrophin receptor (p75NTR) regulates the time course of PV cell maturation in a cell-autonomous fashion.
View Article and Find Full Text PDFBy virtue of their extensive axonal arborization and perisomatic synaptic targeting, cortical inhibitory parvalbumin (PV) cells strongly regulate principal cell output and plasticity and modulate experience-dependent refinement of cortical circuits during development. An interesting aspect of PV cell connectivity is its prolonged maturation time course, which is completed only by end of adolescence. The p75 neurotrophin receptor (p75NTR) regulates numerous cellular functions; however, its role on cortical circuit development and plasticity remains elusive, mainly because localizing p75NTR expression with cellular and temporal resolution has been challenging.
View Article and Find Full Text PDFThe MyoD gene is part of the core regulatory network that governs skeletal myogenesis and acts as an essential determinant of the myogenic cell fate. Although generic regulatory networks converging on this gene have been described, the specific mechanisms leading to MyoD expression in muscles of different ontology remain misunderstood. We now show that the homeobox gene Pitx2 is required for initial activation of the MyoD gene in limb muscle precursors through direct binding of Pitx2 to the MyoD core enhancer.
View Article and Find Full Text PDFLimbs develop using a common genetic programme despite widely differing morphologies. This programme is modulated by limb-restricted regulators such as hindlimb (HL) transcription factors Pitx1 and Tbx4 and the forelimb (FL) Tbx5. Both Tbx factors have been implicated in limb patterning and growth, but their relative activities and underlying mechanisms remain unclear.
View Article and Find Full Text PDF