Publications by authors named "Mariska Ronteltap"

Emerging contaminants are a growing concern for scientists and public authorities. The group of per-polyfluoroalkyl substances (PFAS), known as 'forever chemicals', in complex environmental liquid and solid matrices was analysed in this study. The development of global analytical methods based on combustion ion chromatography (CIC) is expected to provide accurate picture of the overall PFAS contamination level via the determination of extractable organic fluorine (EOF) and adsorbable organic fluorine (AOF).

View Article and Find Full Text PDF

This study examined the potential of Escherichia coli (E. coli) and Ascaris lumbricoides (A. lumbricoides) eggs inactivation in faecal matter coming from urine diverting dehydrating toilets (UDDT-F) by applying high concentrations of volatile fatty acids (VFAs) during anaerobic stabilization.

View Article and Find Full Text PDF

Studies show that source separated human excreta have a fertilizing potential with benefits to plant growth and crop yield similar or exceeding that of mineral fertilizers. The main challenges in fertilizing with excreta are pathogens, and an increased risk of eutrophication of water bodies in case of runoff. This review shows that lactic acid fermentation of excreta reduces the amount of pathogens, minimizes the nutrient loss and inhibits the production of malodorous compounds, thus increasing its agricultural value.

View Article and Find Full Text PDF

Struvite crystallisation is a fast and reliable phosphorus removal and recovery process for concentrated waste streams - such as hydrolysed human urine. In order to optimise P-elimination efficiency, it is beneficial to obtain larger particle sizes: they are easier to separate and less prone to wash-out than smaller particles. This paper presents the results of a study on the effect of process parameters on particle size in a single step struvite precipitation.

View Article and Find Full Text PDF

Separating urine from wastewater at the source reduces the costs of extensive wastewater treatment. Recovering the nutrients from urine and reusing them for agricultural purposes adds resource saving to the benefits. Phosphate can be recovered in the form of struvite (magnesium ammonium phosphate).

View Article and Find Full Text PDF

Struvite (MgNH(4)PO(4).6H(2)O) precipitation eliminates phosphate efficiently from urine, a small but highly concentrated stream in the total flux of domestic wastewater. Precipitation experiments with hydrolysed urine evaluated the solubility product of struvite.

View Article and Find Full Text PDF

A sulfate-reducing bacterium, strain WW1, was isolated from a thermophilic bioreactor operated at 65 degrees C with methanol as sole energy source in the presence of sulfate. Growth of strain WW1 on methanol or acetate was inhibited at a sulfide concentration of 200 mg l(-1), while on H2/CO2, no apparent inhibition occurred up to a concentration of 500 mg l(-1). When strain WW1 was co-cultured under the same conditions with the methanol-utilizing, non-sulfate-reducing bacteria, Thermotoga lettingae and Moorella mulderi, both originating from the same bioreactor, growth and sulfide formation were observed up to 430 mg l(-1).

View Article and Find Full Text PDF