We describe the development and demonstration of a high-repetition-rate-capable dual-channel (DC) x-ray spectrometer designed for high-intensity laser-plasma experiments (≥1×1021 W/cm2). The spectrometer, which operates at high repetition rates, is limited only by the refresh rate of targets and the camera's frame rate. It features two channels, each equipped with a flat highly oriented pyrolytic graphite (HOPG) crystal and a unique detector plane, allowing it to resolve two distinct x-ray bands: approximately 7-10 and 10-13 keV.
View Article and Find Full Text PDFWe demonstrate a flexible multichannel fiber-based imaging Doppler spectrometer to characterize plasmas in high intensity (≥1 × 1018 W/cm2) laser-plasma experiments at high repetition rates. This instrument collects data from ×21 different plasma locations combining optical fibers and a single imaging spectrometer. This diagnostic maps the plasma velocity evolution as a function of time with sub-pico-second resolution.
View Article and Find Full Text PDFIndirect Drive Inertial Confinement Fusion Experiments on the National Ignition Facility (NIF) have achieved a burning plasma state with neutron yields exceeding 170 kJ, roughly 3 times the prior record and a necessary stage for igniting plasmas. The results are achieved despite multiple sources of degradations that lead to high variability in performance. Results shown here, for the first time, include an empirical correction factor for mode-2 asymmetry in the burning plasma regime in addition to previously determined corrections for radiative mix and mode-1.
View Article and Find Full Text PDFPhys Rev Lett
February 2024
We present the development of a flexible tape-drive target system to generate and control secondary high-intensity laser-plasma sources. Its adjustable design permits the generation of relativistic MeV particles and x rays at high-intensity (i.e.
View Article and Find Full Text PDFPrevious work has shown that compared with young adults, older adults generalize their walking patterns more across environments that impose different motor demands (i.e., split-belt treadmill vs.
View Article and Find Full Text PDFWe present the development of a compact Thomson parabola ion spectrometer capable of characterizing the energy spectra of various ion species of multi-MeV ion beams from >10W/cm laser produced plasmas at rates commensurate with the highest available from any of the current and near-future PW-class laser facilities. This diagnostic makes use of a polyvinyl toluene based fast plastic scintillator (EJ-260), and the emitted light is collected using an optical imaging system coupled to a thermoelectrically cooled scientific complementary metal-oxide-semiconductor camera. This offers a robust solution for data acquisition at a high repetition rate, while avoiding the added complications and nonlinearities of micro-channel plate based systems.
View Article and Find Full Text PDFThe PROBIES diagnostic is a new, highly flexible, imaging and energy spectrometer designed for laser-accelerated protons. The diagnostic can detect low-mode spatial variations in the proton beam profile while resolving multiple energies on a single detector or more. When a radiochromic film stack is employed for "single-shot mode," the energy resolution of the stack can be greatly increased while reducing the need for large numbers of films; for example, a recently deployed version allowed for 180 unique energy measurements spanning ∼3 to 75 MeV with <0.
View Article and Find Full Text PDFWe present measurements of ice-ablator mix at stagnation of inertially confined, cryogenically layered capsule implosions. An ice layer thickness scan with layers significantly thinner than used in ignition experiments enables us to investigate mix near the inner ablator interface. Our experiments reveal for the first time that the majority of atomically mixed ablator material is "dark" mix.
View Article and Find Full Text PDFRev Sci Instrum
November 2022
We present in this work the development of an ultra-compact, multi-channel x-ray spectrometer (UCXS). This diagnostic has been specially built and adapted to perform at high-repetition-rate (>1 Hz) for high-intensity, short-pulse laser plasma experiments. X-ray filters of varying materials and thicknesses are chosen to provide spectral resolution up to ΔE ≈ 1 keV over the x-ray energy range of 1-30 keV.
View Article and Find Full Text PDFAccurately and rapidly diagnosing laser-plasma interactions is often difficult due to the time-intensive nature of the analysis and will only become more so with the rise of high repetition rate lasers and the desire to implement feedback on a commensurate timescale. Diagnostic analysis employing machine learning techniques can help address this problem while maintaining a high degree of accuracy. We report on the application of machine learning to the analysis of a scintillator-based electron spectrometer for experiments on high intensity, laser-plasma interactions at the Colorado State University Advanced Lasers and Extreme Photonics facility.
View Article and Find Full Text PDFA plasma mirror platform was developed for the OMEGA-EP facility to redirect beams, thus enabling more flexible experimental configurations as well as a platform that can be used in the future to improve laser contrast. The plasma mirror reflected a short pulse focusing beam at 22.5° angle of incidence onto a 12.
View Article and Find Full Text PDFHigh energy density physics is the field of physics dedicated to the study of matter and plasmas in extreme conditions of temperature, densities and pressures. It encompasses multiple disciplines such as material science, planetary science, laboratory and astrophysical plasma science. For the latter, high energy density states can be accompanied by extreme radiation environments and super-strong magnetic fields.
View Article and Find Full Text PDFHumans can perform complex movements with speed and agility in the face of constantly changing task demands. To accomplish this, motor plans are adapted to account for errors in our movements because of changes in our body (e.g.
View Article and Find Full Text PDFObtaining a burning plasma is a critical step towards self-sustaining fusion energy. A burning plasma is one in which the fusion reactions themselves are the primary source of heating in the plasma, which is necessary to sustain and propagate the burn, enabling high energy gain. After decades of fusion research, here we achieve a burning-plasma state in the laboratory.
View Article and Find Full Text PDFWe present a deep learning based framework for real-time analysis of a differential filter based x-ray spectrometer that is common on short-pulse laser experiments. The analysis framework was trained with a large repository of synthetic data to retrieve key experimental metrics, such as slope temperature. With traditional analysis methods, these quantities would have to be extracted from data using a time-intensive and manual analysis.
View Article and Find Full Text PDFSlow and fast light, or large changes in the group velocity of light, have been observed in a range of optical media, but the fine optical control necessary to induce an observable effect has not been achieved in a plasma. Here, we describe how the ion-acoustic response in a fully ionized plasma can produce large and measurable changes in the group velocity of light. We show the first experimental demonstration of slow and fast light in a plasma, measuring group velocities between 0.
View Article and Find Full Text PDFHigh-energy-density physics is the field of physics concerned with studying matter at extremely high temperatures and densities. Such conditions produce highly nonlinear plasmas, in which several phenomena that can normally be treated independently of one another become strongly coupled. The study of these plasmas is important for our understanding of astrophysics, nuclear fusion and fundamental physics-however, the nonlinearities and strong couplings present in these extreme physical systems makes them very difficult to understand theoretically or to optimize experimentally.
View Article and Find Full Text PDFProton beams driven by chirped pulse amplified lasers have multi-picosecond duration and can isochorically and volumetrically heat material samples, potentially providing an approach for creating samples of warm dense matter with conditions not present on Earth. Envisioned on a larger scale, they could heat fusion fuel to achieve ignition. We have shown in an experiment that a kilojoule-class, multi-picosecond short pulse laser is particularly effective for heating materials.
View Article and Find Full Text PDFThe impact to fusion energy production due to the radiative loss from a localized mix in inertial confinement implosions using high density carbon capsule targets has been quantified. The radiative loss from the localized mix and local cooling of the reacting plasma conditions was quantified using neutron and x-ray images to reconstruct the hot spot conditions during thermonuclear burn. Such localized features arise from ablator material that is injected into the hot spot from the Rayleigh-Taylor growth of capsule surface perturbations, particularly the tube used to fill the capsule with deuterium and tritium fuel.
View Article and Find Full Text PDFRelativistic electron temperatures were measured from kilojoule, subrelativistic laser-plasma interactions. Experiments show an order of magnitude higher temperatures than expected from a ponderomotive scaling, where temperatures of up to 2.2 MeV were generated using an intensity of 1×10^{18}W/cm^{2}.
View Article and Find Full Text PDF