Publications by authors named "Marisabel Rodriguez Messan"

The advancements in next-generation sequencing have made it possible to effectively detect somatic mutations, which has led to the development of personalized neoantigen cancer vaccines that are tailored to the unique variants found in a patient's cancer. These vaccines can provide significant clinical benefit by leveraging the patient's immune response to eliminate malignant cells. However, determining the optimal vaccine dose for each patient is a challenge due to the heterogeneity of tumors.

View Article and Find Full Text PDF

Drug resistance is a significant obstacle to effective cancer treatment. To gain insights into how drug resistance develops, we adopted a concept called fitness landscape and employed a phenotype-structured population model by fitting to a set of experimental data on a drug used for ovarian cancer, olaparib. Our modeling approach allowed us to understand how a drug affects the fitness landscape and track the evolution of a population of cancer cells structured with a spectrum of drug resistance.

View Article and Find Full Text PDF

The US FDA Center for Biologics Evaluation and Research (CBER) is responsible for the regulation of biologically derived products. FDA has established Advisory Committees (AC) as vehicles to seek external expert advice on scientific and technical matters related to the development and evaluation of products regulated by the agency. We aimed to identify and evaluate common topics discussed in CBER AC meetings during the regulatory decision-making process for biological products and medical devices.

View Article and Find Full Text PDF

Cancer neoantigen vaccines have emerged as a promising approach to stimulating the immune system to fight cancer. We propose a simple model including key elements of cancer-immune interactions and conduct a phase plane analysis to understand the immunological mechanisms of cancer neoantigen vaccines. Analytical results are obtained for two widely used functional forms that represent the killing rate of tumor cells by immune cells: the law of mass action (LMA) and the dePillis-Radunskaya Law (LPR).

View Article and Find Full Text PDF

Cancer vaccines are an important component of the cancer immunotherapy toolkit enhancing immune response to malignant cells by activating CD4+ and CD8+ T cells. Multiple successful clinical applications of cancer vaccines have shown good safety and efficacy. Despite the notable progress, significant challenges remain in obtaining consistent immune responses across heterogeneous patient populations, as well as various cancers.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T-cell therapy is an immunotherapy that has recently become highly instrumental in the fight against life-threatening diseases. A variety of modeling and computational simulation efforts have addressed different aspects of CAR T-cell therapy, including T-cell activation, T- and malignant cell population dynamics, therapeutic cost-effectiveness strategies, and patient survival. In this article, we present a systematic review of those efforts, including mathematical, statistical, and stochastic models employing a wide range of algorithms, from differential equations to machine learning.

View Article and Find Full Text PDF

This study develops a novel model of a consumer-resource system with mobility included, in order to explain a novel experiment of competition between two breast cancer cell lines grown in 3D in vitro spheroid culture. The model reproduces observed differences in monoculture, such as overshoot phenomena and final size. It also explains both theoretically and through simulation the inevitable triumph of the same cell line in co-culture, independent of initial conditions.

View Article and Find Full Text PDF

Quantifying how accurate epidemiological models of COVID-19 forecast the number of future cases and deaths can help frame how to incorporate mathematical models to inform public health decisions. Here we analyze and score the predictive ability of publicly available COVID-19 epidemiological models on the COVID-19 Forecast Hub. Our score uses the posted forecast cumulative distributions to compute the log-likelihood for held-out COVID-19 positive cases and deaths.

View Article and Find Full Text PDF

In this paper, we use an adaptive modeling framework to model and study how nutritional status (measured by the protein to carbohydrate ratio) may regulate population dynamics and foraging task allocation of social insect colonies. Mathematical analysis of our model shows that both investment to brood rearing and brood nutrition are important for colony survival and dynamics. When division of labour and/or nutrition are in an intermediate value range, the model undergoes a backward bifurcation and creates multiple attractors due to bistability.

View Article and Find Full Text PDF

The exchange of resources across ecosystem boundaries can have large impacts on ecosystem structures and functions at local and regional scales. In this article, we develop a simple model to investigate dynamical implications of bi-directional resource exchanges between two local ecosystems in a meta-ecosystem framework. In our model, we assume that (1) Each local ecosystem acts as both a resource donor and recipient, such that one ecosystem donating resources to another results in a cost to the donating system and a benefit to the recipient; and (2) The costs and benefits of the bi-directional resource exchange between two ecosystems are correlated in a nonlinear fashion.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: