Understanding the chemical and electronic properties of point defects in two-dimensional materials, as well as their generation and passivation, is essential for the development of functional systems, spanning from next-generation optoelectronic devices to advanced catalysis. Here, we use synchrotron-based X-ray photoelectron spectroscopy (XPS) with submicron spatial resolution to create sulfur vacancies (SVs) in monolayer MoS and monitor their chemical and electronic properties during the defect creation process. X-ray irradiation leads to the emergence of a distinct Mo 3d spectral feature associated with undercoordinated Mo atoms.
View Article and Find Full Text PDF