Publications by authors named "Marisa Skaljac"

The development of novel and safe insecticides remains an important need for a growing world population to protect crops and animal and human health. New chemotypes modulating the insect nicotinic acetylcholine receptors have been recently brought to the agricultural market, yet with limited understanding of their molecular interactions at their target receptor. Herein, we disclose the first crystal structures of these insecticides, namely, sulfoxaflor, flupyradifurone, triflumezopyrim, flupyrimin, and the experimental compound, dicloromezotiaz, in a double-mutated acetylcholine-binding protein which mimics the insect-ion-channel orthosteric site.

View Article and Find Full Text PDF

Insect pests reduce global crop yields by up to 20%, but the most effective control measures are currently based on environmentally hazardous chemical pesticides. An alternative, ecologically beneficial pest-management strategy involves the use of microbial pathogens (or active compounds and extracts derived from them) that naturally target selected insect pests. A novel strain of the bacterium showed promising activity in our preliminary tests.

View Article and Find Full Text PDF

CREB-binding protein (p300/CBP) is a universal transcriptional co-regulator with lysine acetyltransferase activity. p300/CBP is a well-known regulator of embryogenesis, and recent studies in beetles and cockroaches have revealed the importance of this protein during post-embryonic development and endocrine signaling. In pest insects, p300/CBP may therefore offer a useful target for control methods based on RNA interference (RNAi).

View Article and Find Full Text PDF

Natural products (NPs) from microorganisms have been important sources for discovering new therapeutic and chemical entities. While their corresponding biosynthetic gene clusters (BGCs) can be easily identified by gene-sequence-similarity-based bioinformatics strategies, the actual access to these NPs for structure elucidation and bioactivity testing remains difficult. Deletion of the gene encoding the RNA chaperone, Hfq, results in strains losing the production of most NPs.

View Article and Find Full Text PDF

Ant venoms contain many small, linear peptides, an untapped source of bioactive peptide toxins. The control of agricultural insect pests currently depends primarily on chemical insecticides, but their intensive use damages the environment and human health, and encourages the emergence of resistant pest populations. This has promoted interest in animal venoms as a source of alternative, environmentally-friendly bio-insecticides.

View Article and Find Full Text PDF

Histone acetylation is an evolutionarily conserved epigenetic mechanism of eukaryotic gene regulation which is tightly controlled by the opposing activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). In insects, life-history traits such as longevity and fecundity are severely affected by the suppression of HAT/HDAC activity, which can be achieved by RNA-mediated gene silencing or the application of chemical inhibitors. We used both experimental approaches to investigate the effect of HAT/HDAC inhibition in the pea aphid (Acyrthosiphon pisum) a model insect often used to study complex life-history traits.

View Article and Find Full Text PDF

Aphids are economically important pest insects that damage plants by phloem feeding and the transmission of plant viruses. Their ability to feed exclusively on nutritionally poor phloem sap is dependent on the obligatory symbiotic bacterium , but additional facultative symbionts may also be present, a common example of which is . Many species secrete extracellular enzymes, so we hypothesised that may produce proteases that help aphids to feed on plants.

View Article and Find Full Text PDF

Ants are a biodiverse group of insects that have evolved toxic venom containing many undiscovered bioactive molecules. In this study, we found that the venom of the ruby ant is a rich source of peptides. LC-MS analysis revealed the presence of 142 different peptides varying in molecular weight, sequence length, and hydrophobicity.

View Article and Find Full Text PDF

Background: Aphids are agricultural pests that damage crops by direct feeding and by vectoring important plant viruses. Bacterial symbionts can influence aphid biology, e.g.

View Article and Find Full Text PDF

Bemisia tabaci (Gennadius), Trialeurodes vaporariorum (Westwood), and Siphoninus phillyreae (Haliday) are whitefly species that harm agricultural crops in many regions of the world. These insects live in close association with bacterial symbionts that affect host fitness and adaptation to the environment. In the current study, we surveyed the infection of whitefly populations in Southeast Europe by various bacterial symbionts and performed phylogenetic analyses on the different symbionts detected.

View Article and Find Full Text PDF

Aphids are severe agricultural pests that damage crops by feeding on phloem sap and vectoring plant pathogens. Chemical insecticides provide an important aphid control strategy, but alternative and sustainable control measures are required to avoid rapidly emerging resistance, environmental contamination, and the risk to humans and beneficial organisms. Aphids are dependent on bacterial symbionts, which enable them to survive on phloem sap lacking essential nutrients, as well as conferring environmental stress tolerance and resistance to parasites.

View Article and Find Full Text PDF

Lucilia sericata maggots are the only species currently approved for maggot debridement therapy (MDT), an alternative treatment for chronic and recalcitrant wounds. Maggots promote wound debridement, disinfection and healing by producing a complex mixture of proteins, peptides and low-molecular-weight compounds in their secretions and excretions, but the individual components are not well characterized at the molecular level. Here we investigated the purine catabolism pathway in L.

View Article and Find Full Text PDF

Heat shock protein 83 (HSP83) is homologous to the chaperone HSP90. It has pleiotropic functions in Drosophila melanogaster, including the control of longevity and fecundity, and facilitates morphological evolution by buffering cryptic deleterious mutations in wild populations. In the pea aphid Acyrthosiphon pisum, HSP83 expression is moderately induced by bacterial infection but upregulated more strongly in response to heat stress and fungal infection.

View Article and Find Full Text PDF

Fluorescence in situ hybridization (FISH) is a name given to a variety of techniques commonly used for visualizing gene transcripts in eukaryotic cells and can be further modified to visualize other components in the cell such as infection with viruses and bacteria. Spatial localization and visualization of viruses and bacteria during the infection process is an essential step that complements expression profiling experiments such as microarrays and RNAseq in response to different stimuli. Understanding the spatiotemporal infections with these agents complements biological experiments aimed at understanding their interaction with cellular components.

View Article and Find Full Text PDF

Tomato yellow leaf curl virus (TYLCV) (Geminiviridae: Begomovirus) is exclusively vectored by the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). TYLCV transmission depends upon a 63-kDa GroEL protein produced by the vector's endosymbiotic bacteria. B.

View Article and Find Full Text PDF

Background: Whiteflies are cosmopolitan phloem-feeding pests that cause serious damage to many crops worldwide due to direct feeding and vectoring of many plant viruses. The sweetpotato whitefly Bemisia tabaci (Gennadius) and the greenhouse whitefly Trialeurodes vaporariorum (Westwood) are two of the most widespread and damaging whitefly species. To complete their unbalanced diet, whiteflies harbor the obligatory bacterium Portiera aleyrodidarum.

View Article and Find Full Text PDF