Publications by authors named "Marisa N Fernandes"

Iron oxide nanoparticles (IONPs) are being increasingly recognized as viable materials for environmental remediation due to their capacity to adsorb contaminants such as glyphosate (GLY) on their surfaces. Nevertheless, the ecotoxicological implications of IONPs associated with GLY necessitate thorough evaluation to ascertain the safety of such remediation strategies. In this context, the present investigation was conducted to examine hepatic biomarkers pertinent to the redox system, as well as ultrastructural hepatic alterations in Poecilia reticulata, following a 21-day exposure to environmentally relevant concentrations of IONPs, iron ions (Fe), and glyphosate in its pure form (GLY) as well as a commercial glyphosate-based herbicide (GBH).

View Article and Find Full Text PDF

Settleable atmospheric particulate matter (SePM), from steelmaking processes, contains a complex mixture of metals, metalloids, and metallic nanoparticles. The SePM is released airborne and disperses in water, representing a significant threat to aquatic life, particularly fish. This study investigated the effects of a sublethal and environmentally relevant concentration of SePM (1 g·L) for 96 h in the gill, liver, kidney, and white muscle of Nile tilapia (Oreochromis niloticus), employing exposure and effect biomarkers to test causality between metal accumulation and biochemical responses.

View Article and Find Full Text PDF

The metallurgy industry is a potent global source of particulate matter (PM) atmospheric emissions. A portion of this PM may settle in aquatic (SePM) carrying metal/metalloid particles and metallic nanoparticles. Surprisingly, this form of contamination has not received due attention from most environmental monitoring agencies.

View Article and Find Full Text PDF

We use the sentinel mangrove crab, Minuca rapax, as a model to investigate the effects of metallic settleable particulate matter (SePM) on wetland. Multiple levels of energetic responses, including (i) metabolic rate and energy budget, (ii) oxidative stress, and (iii) behavioral response by righting time, were assessed as well as the metal and metalloid content in crabs exposed to 0, 0.1 and 1 g.

View Article and Find Full Text PDF

Microplastics (MPs) and glyphosate-based herbicides (GBH) are among the most common contaminants in aquatic environments. In Brazilian rivers, both contaminants were found in elevated levels, leading to a high probability of their association, which can alter their individual effects and potentially intensify their toxicity. This study evaluated the isolated and combined effects of polyethylene microplastics (PE-MPs) and GBH on Oreochromis niloticus using multi-biomarkers of toxicity.

View Article and Find Full Text PDF

Fungicides are pesticides that are frequently used in agriculture because of their action against fungal diseases. However, the widespread application of pesticides around the world raises environmental and public health concerns, since these compounds are toxic and can pose risks to ecosystems and human health. The aim of this study was to evaluate the phytotoxic, cytogenotoxic, and biochemical effects of azoxystrobin and carbendazim on Lactuca sativa L.

View Article and Find Full Text PDF

Metallurgical activities are a significant source of settleable atmospheric particulate matter (SePM). The material is exposed to wind action, leading to its deposition throughout terrestrial and aquatic ecosystems, thus promoting contamination by metals and metalloids. However, knowledge of the impacts on biota is scarce.

View Article and Find Full Text PDF

The steel industry is a significant worldwide source of atmospheric particulate matter (PM). Part of PM may settle (SePM) and deposit metal/metalloid and metallic nanoparticles in aquatic ecosystems. However, such an air-to-water cross-contamination is not observed by most monitoring agencies.

View Article and Find Full Text PDF

Bullfrog tadpoles, Aquarana catesbeiana, were exposed to settleable particulate matter (SePM), (1 g L, 96 h) and their organs were collected for analysis of metal/metalloid, oxidative stress and neurotoxicity in liver, muscle, kidney and brain. The SePM water of the exposed groups contained 18 of the 28 metals/metalloids detected in ambient particulate matter (APM). Fe and Al were those that presented the highest concentrations, Cr, Mn, Pb and Cu increased from 10 to 20 times and Ti, V, Sr, Rb, Cd, Sn and Ni increased from 1 to 3 times compared to the control.

View Article and Find Full Text PDF

Pig farming is recognized as an activity with great polluting potential. The aim was to investigate possible environmental risks of effluents from the stabilization pond (SP) and the raw effluent (RE) from the biodigestion process of swine residues, in different concentrations in the models Lactuca sativa and Allium cepa. Seeds were germinated in different dilutions, 100% (C1), 50% (C2), 25% (C3), 12.

View Article and Find Full Text PDF
Article Synopsis
  • Pesticides like Clethodim can boost agricultural productivity but pose risks to health and the environment.
  • The study focused on Clethodim's effects on Allium cepa (onion), revealing its phytotoxicity that inhibited germination and root growth.
  • Results showed that higher concentrations led to mutagenicity, increased oxidative stress, and changes in enzyme activity, indicating significant negative impacts on plant health.
View Article and Find Full Text PDF

Amphibians are more susceptible to environmental stressors than other vertebrates due to their semipermeable skin and physiological adaptations to living in very specific microhabitats. Therefore, the aim of the present study was to investigate the effects of a metal mixture from settleable particulate matter (SePM) released from metallurgical industries on Lithobates catesbeianus tadpoles. Endpoints analyzed included metal bioconcentration, morphological (biometrical indices), hematological parameters (hemoglobin and blood cell count), and erythrocyte DNA damage (genotoxicity and mutagenicity).

View Article and Find Full Text PDF

Metallurgical industries are a continuous source of air pollution due to the amount of settleable particulate matter (SePM) they release. This SePM is a complex mixture formed by metallic nanoparticles and metals, which reach terrestrial and aquatic ecosystems and can be a significant source of contamination. The aim of this study was to evaluate the adverse effects of SePM at different levels of biological organization in order to estimate its ecological impacts on aquatic ecosystems.

View Article and Find Full Text PDF

Graphene oxide (GO) and reduced graphene oxide (rGO) are both widely applicable and there is a massive production throughout the world which imply in inevitable contamination in the aquatic environment by their wastes. Nevertheless, information about their interaction at the cellular level in fish is still scarce. We investigated the metabolic activity, reactive oxygen species (ROS) production, responses of antioxidant defenses, and total antioxidant capacity (TAC) as well as oxidative stress and DNA integrity in zebrafish liver cells (ZFL) exposed to (0.

View Article and Find Full Text PDF

Mangroves represent a challenge in monitoring studies due to their physical and chemical conditions under constant marine and anthropogenic influences. This study investigated metals/metalloids whole-body bioaccumulation (soft tissues) and the risk associated with their uptake, biochemical and morphological detoxification processes in gills and metals/metalloids immobilisation in shells of the neotropical sentinel oyster Crassostrea rhizophorae from two Brazilian estuarine sites. Biochemical and morphological responses indicated three main mechanisms: (1) catalase, superoxide dismutase and glutathione played important roles as the first defence against reactive oxygen species; (2) antioxidant capacity against peroxyl radicals, glutathione S-transferase, metallothionein prevent protein damage and (3) metals/metalloids sequestration into oyster shells as a mechanism of oyster detoxification.

View Article and Find Full Text PDF

Settleable atmospheric particulate matter (SeAPM) containing a mixture of metals, including metallic nanoparticles, has increased throughout the world, and caused environmental and biota contamination. The metal bioconcentration pattern in Nile tilapia (Oreochromis niloticus) was evaluated during a 30-day exposure to 1 g L SeAPM and assessed the human health risk from consuming fish fillets (muscle) based on the estimated daily intake (EDI). SeAPM was collected surrounding an iron ore processing and steel industrial complex in Vitória city (Espírito Santo, Brazil) area.

View Article and Find Full Text PDF

Metallic smoke released by steel industries is constitute by a mixture of fine and gross particles containing metals, including the emerging ones, which sedimentation contaminates soil and aquatic ecosystems and put in risk the resident biota. This study determined the metal/metalloids in the atmospheric settleable particulate matter (SePM, particles >10 μm) from a metallurgical industrial area and evaluated metal bioconcentration, antioxidant responses, oxidative stress, and the histopathology in the gills, hepatopancreas and kidneys of fat snook fish (Centropomus parallelus) exposed to different concentrations of SePM (0.0, 0.

View Article and Find Full Text PDF

Some atmospheric pollutants may affect aquatic ecosystems after settling, generating contamination, bioaccumulation, and threats to aquatic species. Metallurgical processes result in the emission of settleable atmospheric particulate matter (SePM), including metals and metalloids, along with rare earth elements (REE) that are considered emerging contaminants. We report the 30-day exposure of brown mussels (Perna perna) to SePM collected in a metallurgical area of southeast Brazil close to estuarine ecosystems, followed by a 30-day clearance period, to evaluate the toxic potential of SePM to this model mollusk.

View Article and Find Full Text PDF

This study evaluated the genetic damage, oxidative stress, neurotoxicity, and energy metabolism in bullfrog tadpoles (Lithobates catesbeianus) exposed to water from two sites of the Sorocaba River, Ibiúna (PI), and Itupararanga reservoir (PIR), in summer and winter. After 96-h exposure, the erythrocyte number decreased in PI and increase in PIR in summer. Bullfrogs show oxidative unbalance (liver, kidney, and muscle), with alterations in the nitric oxide synthase and glucose 6-phosphate dehydrogenase.

View Article and Find Full Text PDF

Iron and steel industries discharge a large amount of atmospheric particulate matter (PM) containing metals and metallic nanoparticles (NPs) that contaminate not only the air, but also settle into the aquatic environments. However, the effects of settleable atmospheric particulate matter (SePM) on aquatic fauna are still poorly understood. This study aimed to evaluate the sublethal effects of a short-term exposure to a realistic concentration of SePM on Nile tilapia (Oreochromis niloticus) using a multi-biomarker approach: relative ventricular mass (RVM) and heart function, blood oxidative stress, stress indicators, hemoglobin concentration, metallic NPs internalization, and metal bioaccumulation.

View Article and Find Full Text PDF

A decerebrate rattlesnake, Crotalus durissus, has previously been used as a model Squamate for cardiovascular studies. It enabled instrumentation for concomitant recordings of diverse variables that showed autonomic responses. However, to validate the preparation and its scope for use, it is necessary to assess how close its cardiovascular variables are to non-decerebrate snakes and the effectiveness of its autonomic responses.

View Article and Find Full Text PDF

Microcystins (MC) are hepatotoxic for organisms. Liver MC accumulation and structural change are intensely studied, but the functional hepatic enzymes and energy metabolism have received little attention. This study investigated the liver and hepatocyte structures and the activity of key hepatic functional enzymes with emphasis on energetic metabolism changes after subchronic fish exposure to cyanobacterial crude extract (CE) containing MC.

View Article and Find Full Text PDF

Toxicity evaluations involve the analysis of multiple biomarkers. In this study, the liver, target organ analyzed by treatments with iron concentrations, indicated the accumulation of lipids as a response. Considering that the distribution of lipids in an organ is directly related to the induction of inflammatory processes by aquatic contaminants, this study proposes to carry out an integrative investigation of the behavior and the distribution of lipids in the liver tissue.

View Article and Find Full Text PDF

Graphene oxide (GO) and reduced graphene oxide (rGO) are carbon-based nanomaterials that have a wide range of applicability. Therefore, it is expected that their residual traces reach the aquatic environment, accumulate, and interact with its different compartments and the biota living in them. The concentration- and time-dependency response to GO and rGO in aquatic organisms are still poorly known.

View Article and Find Full Text PDF

Steel industry emissions of atmospheric particulate matter are responsible for air to water cross-contamination, which deposits metal/metalloid contaminants in aquatic ecosystems. This source of contamination has not been considered in most of the environmental monitoring protocols. Settleable atmospheric particulate matter (SePM) collected in an area of steel industry influence was used to analyze the sublethal effects on the hematological and innate immunological variables in Nile tilapia (Oreochromis niloticus) after short-term exposure (96 h).

View Article and Find Full Text PDF