Publications by authors named "Marisa M Pasella"

Deep sea benthic habitats are low productivity ecosystems that host an abundance of organisms within the Cnidaria phylum. The technical limitations and the high cost of deep sea surveys have made exploring deep sea environments and the biology of the organisms that inhabit them challenging. In spite of the widespread recognition of Cnidaria's environmental importance in these ecosystems, the microbial assemblage and its role in coral functioning have only been studied for a few deep water corals.

View Article and Find Full Text PDF

Ostreobium is a siphonous green alga in the Bryopsidales (Chlorophyta) that burrows into calcium carbonate (CaCO) substrates. In this habitat, it lives under environmental conditions unusual for an alga (i.e.

View Article and Find Full Text PDF

The green alga Ostreobium is an important coral holobiont member, playing key roles in skeletal decalcification and providing photosynthate to bleached corals that have lost their dinoflagellate endosymbionts. Ostreobium lives in the coral's skeleton, a low-light environment with variable pH and O availability. We present the Ostreobium nuclear genome and a metatranscriptomic analysis of healthy and bleached corals to improve our understanding of Ostreobium's adaptations to its extreme environment and its roles as a coral holobiont member.

View Article and Find Full Text PDF

Populations of many Mediterranean marine species show a strong phylogeographic structure, but the knowledge available for native seaweeds is limited. We investigated the genetic diversity of the green alga Halimeda tuna based on two plastid markers (tufA gene and a newly developed amplicon spanning five ribosomal protein genes and intergenic spacers, the rpl2-rpl14 region). The tufA sequences showed that Mediterranean H.

View Article and Find Full Text PDF

The order Ceramiales contains about one third of red algal diversity and it was classically classified into four families according to morphology. The first phylogenies based on one or two molecular markers were poorly supported and failed to resolve these families as monophyletic. Nine families are currently recognized, but relationships within and among them are poorly understood.

View Article and Find Full Text PDF