Understanding peptide presentation by specific MHC alleles is fundamental for controlling physiological functions of T cells and harnessing them for therapeutic use. However, commonly used in silico predictions and mass spectroscopy have their limitations in precision, sensitivity, and throughput, particularly for MHC class II. Here, we present MEDi, a novel mammalian epitope display that allows an unbiased, affordable, high-resolution mapping of MHC peptide presentation capacity.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) is a biosynthetic organelle in eukaryotic cells. Its capacity to produce proteins, lipids and oligosaccharides responds to physiologic and pathologic demand. The transcriptional and translational unfolded protein response (UPR) programs increase ER size and activity.
View Article and Find Full Text PDFIn mammalian cells, one-third of all polypeptides are integrated into the membrane or translocated into the lumen of the endoplasmic reticulum (ER) via the Sec61 channel. While the Sec61 complex facilitates ER import of most precursor polypeptides, the Sec61-associated Sec62/Sec63 complex supports ER import in a substrate-specific manner. So far, mainly posttranslationally imported precursors and the two cotranslationally imported precursors of ERj3 and prion protein were found to depend on the Sec62/Sec63 complex in vitro.
View Article and Find Full Text PDFPhysiological and pathological stresses may cause swelling of the endoplasmic reticulum (ER), a biosynthetic organelle in eukaryotic cells. Upon conclusion of the stress, ER size and content return to physiological levels. The translocon component SEC62 decorates the portions of excess ER that must be cleared from cells.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) produces about 40% of the nucleated cell's proteome. ER size and content in molecular chaperones increase upon physiologic and pathologic stresses on activation of unfolded protein responses (UPR). On stress resolution, the mammalian ER is remodeled to pre-stress, physiologic size and function on activation of the LC3-binding activity of the translocon component SEC62.
View Article and Find Full Text PDFMaintenance of cellular proteostasis relies on efficient clearance of defective gene products. For misfolded secretory proteins, this involves dislocation from the endoplasmic reticulum (ER) into the cytosol followed by proteasomal degradation. However, polypeptide aggregation prevents cytosolic dislocation and instead activates ill-defined lysosomal catabolic pathways.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) is the site of protein, lipid, phospholipid, steroid and oligosaccharide synthesis and modification, calcium ion storage, and detoxification of endogenous and exogenous products. Its volume (and activity) must be maintained under normal growth conditions, must be expanded in a controlled manner on activation of ER stress programs and must be reduced to pre-stress size during the recovery phase that follows ER stress termination. ER-phagy is the constitutive or regulated fragmentation and delivery of ER fragments to lysosomal compartments for clearance.
View Article and Find Full Text PDFAmplification of the candidate oncogene in tumors correlates with reduced patient survival. The recently reported role of SEC62 as an autophagy receptor that controls endoplasmic reticulum (ER) size and function might open new scenarios for understanding the phenotypes and treat SEC62 tumors, which are characterized by high ER stress tolerance.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) is a site of protein biogenesis in eukaryotic cells. Perturbing ER homeostasis activates stress programs collectively called the unfolded protein response (UPR). The UPR enhances production of ER-resident chaperones and enzymes to reduce the burden of misfolded proteins.
View Article and Find Full Text PDF