Branched oligonucleotides containing a biologically relevant DNA lesion, dCyd341, which involves an interstrand crosslink between a cytosine base on one strand and a ribose moiety on the opposite strand, were prepared in a single automated solid-phase synthesis. For this, we first prepared the phosphoramidite analogue of dCyd341 bearing an orthogonal levulinyl protecting group. Then, following the synthesis of the first DNA strand containing dCyd341, the levulinic group was removed and the synthesis was then continued from the free base hydroxyl group at the branching point, using traditional phosphoramidites.
View Article and Find Full Text PDFThymidine radical cation (1) is produced by ionizing radiation and has been invoked as an intermediate in electron transfer in DNA. Previous studies on its structure and reactivity have utilized thymidine as a precursor, which limits quantitative product analysis because thymidine is readily reformed from 1. In this investigation, radical cation 1 is independently generated via β-heterolysis of a pyrimidine radical generated photochemically from an aryl sulfide.
View Article and Find Full Text PDFChem Res Toxicol
April 2015
Double strand breaks (DSBs) are the most deleterious form of DNA damage. Natural products that produce them are potent cytotoxic agents. Designing molecules that produce DSBs via a single chemical event is challenging.
View Article and Find Full Text PDF