Publications by authors named "Marisa J Anderson"

Inflammasome formation, arising from pathogen or internal activating signals, is a key step in canonical pyroptosis, a gasdermin-mediated inflammatory cell death. Inhibition of pyroptosis has great clinical relevance due to its involvement in many different disease states. Current inhibitors of pyroptosis either only inhibit the final lytic step, which still allows inflammatory signal release, or only inhibit a single inflammasome, which does not account for inherent redundancy in activation of other inflammatory pathways.

View Article and Find Full Text PDF

Pyroptosis is a cell death process that causes inflammation and contributes to numerous diseases. Pyroptosis is mediated by caspase-1 family proteases that cleave the pore-forming protein gasdermin D, causing plasma membrane rupture and release of pathogenic cellular contents. We previously identified muscimol as a small molecule that prevents plasma membrane rupture during pyroptosis via an unidentified mechanism.

View Article and Find Full Text PDF

The family of gasdermin proteins plays a key role in the host response against external and internal pathogenic signals by mediating the form of inflammatory regulated cell death known as pyroptosis. One of the most well-studied gasdermins within innate immunity is gasdermin D, which is cleaved, oligomerizes, and forms plasma membrane pores. Gasdermin D pores lead to a number of downstream cellular consequences including plasma membrane rupture, or cell lysis.

View Article and Find Full Text PDF

Pyroptosis is a regulated form of cell death that leads to inflammation and plays a role in many different diseases. Pyroptosis was initially defined by the dependence on caspase-1, a protease which is activated by innate immune signaling complexes called inflammasomes. Caspase-1 cleaves the protein gasdermin D, releasing the N-terminal pore-forming domain, which inserts into the plasma membrane.

View Article and Find Full Text PDF