Because of synergism between tubulin and HDAC inhibitors, we used the pharmacophore fusion strategy to generate potential tubulin-HDAC dual inhibitors. Drug design was based on the introduction of a -hydroxyacrylamide or a -hydroxypropiolamide at the 5-position of the 2-aroylbenzo[]furan skeleton, to produce compounds - and -, respectively. Among the synthesized compounds, derivatives , , , , and showed excellent antiproliferative activity, with IC values at single- or double-digit nanomolar levels, against the A549, HT-29, and MCF-7 cells resistant towards the control compound combretastatin A-4 (CA-4).
View Article and Find Full Text PDFChemotherapy resistance is considered one of the main causes of tumor relapse, still challenging researchers for the identification of the molecular mechanisms sustaining its emergence. Here, we setup and characterized chemotherapy-resistant models of Medulloblastoma (MB), one of the most lethal pediatric brain tumors, to uncover targetable vulnerabilities associated to their resistant phenotype. Integration of proteomic, transcriptomic and kinomic data revealed a significant deregulation of several pathways in resistant MB cells, converging to cell metabolism, RNA/protein homeostasis, and immune response, eventually impacting on patient outcome.
View Article and Find Full Text PDFThe Bcl-2-associated athanogene 3 (BAG3) protein plays multiple roles in controlling cellular homeostasis, and it has been reported to be deregulated in many cancers, leading tumor cell apoptosis escape. BAG3 protein is then an emerging target for its oncogenic activities in both leukemia and solid cancers, such as medulloblastoma. In this work a series of forty-four compounds were designed and successfully synthesized by the modification and optimization of a previously reported 2,4-thiazolidinedione derivative 28.
View Article and Find Full Text PDFSince the identification of human choline kinase as a protein target against cancer progression, many compounds have been designed to inhibit its function and reduce the biosynthesis of phosphatidylcholine. Herein, we propose a series of bioisosteric inhibitors that are based on the introduction of sulphur and feature improved activity and lipophilic/hydrophilic balance. The evaluation of the inhibitory and of the antiproliferative properties of the PL (dithioethane) and FP (disulphide) libraries led to the identification of PL 48, PL 55 and PL 69 as the most active compounds of the series.
View Article and Find Full Text PDFA further investigation aiming to generate new potential antitumor agents led us to synthesize a new series of twenty-two compounds characterized by the presence of the 7-(3',4',5'-trimethoxyphenyl)-[1,2,4]triazolo[1,5-]pyrimidine pharmacophore modified at its 2-position. Among the synthesized compounds, three were significantly more active than the others. These bore the substituents -toluidino (), -ethylanilino () and 3',4'-dimethylanilino (), and these compounds had IC values of 30-43, 160-240 and 67-160 nM, respectively, on HeLa, A549 and HT-29 cancer cells.
View Article and Find Full Text PDFWe previously demonstrated that Annexin A2 (ANXA2) is a pivotal mediator of the pro-oncogenic features displayed by glioblastoma (GBM) tumors, the deadliest adult brain malignancies, being involved in cell stemness, proliferation and invasion, thus negatively impacting patient prognosis. Based on these results, we hypothesized that compounds able to revert ANXA2-dependent transcriptional features could be exploited as reliable treatments to inhibit GBM cell aggressiveness by hampering their proliferative and migratory potential. Transcriptional signatures obtained by the modulation of ANXA2 activity/levels were functionally mapped through the QUADrATiC bioinformatic tool for compound identification.
View Article and Find Full Text PDFTwo different series of fifty-two compounds, based on 3',4',5'-trimethoxyaniline () and variably substituted anilines () at the 7-position of the 2-substituted-[1,2,4]triazolo [1,5-]pyrimidine nucleus, had moderate to potent antiproliferative activity against A549, MDA-MB-231, HeLa, HT-29 and Jurkat cancer cell lines. All derivatives with a common 3-phenylpropylamino moiety at the 2-position of the triazolopyrimidine scaffold and different halogen-substituted anilines at its 7-position, corresponding to 4'-fluoroaniline (), 4'-fluoro-3'-chloroaniline (), 4'-chloroaniline () and 4'-bromoaniline (), displayed the greatest antiproliferative activity with mean ICs of 83, 101, 91 and 83 nM, respectively. These four compounds inhibited tubulin polymerization about 2-fold more potently than combretastatin A-4 (CA-4), and their activities as inhibitors of [H]colchicine binding to tubulin were similar to that of CA-4.
View Article and Find Full Text PDFDue to its role in lipid biosynthesis, choline kinase α1 (CKα1) is an interesting target for the development of new antitumor agents. In this work, we present a series of 41 compounds designed based on the well-known and successful strategy of introducing thienopyridine and pyrimidine as bioisosteres of other heterocycles in active antitumor compounds. Notwithstanding the fact that some of these compounds do not show significant enzymatic inhibition, others, in contrast, feature substantially improved enzymatic and antiproliferative inhibition values.
View Article and Find Full Text PDFDespite being subjected to high-dose chemo and radiotherapy, glioblastoma (GBM) patients still encounter almost inevitable relapse, due to the capability of tumor cells to disseminate and invade normal brain tissues. Moreover, the presence of a cancer stem cell (CSC) subpopulation, already demonstrated to better resist and evade treatments, further frustrates potential therapeutic approaches. In this context, we previously demonstrated that GBM is characterized by a tightly-regulated balance between the β-catenin cofactors TCF1 and TCF4, with high levels of TCF4 responsible for sustaining CSC in these tumors; thus, supporting their aggressive features.
View Article and Find Full Text PDFA novel series of twenty-seven cinnamides constituted by cinnamic acid derivatives liked to 1-aryl piperazines were synthesized and evaluated for their potential inhibitory diphenolase activity of mushroom tyrosinase. Among them, the presence of a 3-chloro-4-fluorophenyl moiety at the N-1 position of piperazine ring was essential for a potent tyrosinase inhibitory effect, with the 3-nitrocinnamoyl (19p) and 2-chloro-3-methoxycinnamoyl (19t) derivatives as the most potent compounds of the series, with IC of 0.16 and 0.
View Article and Find Full Text PDFCholine kinase inhibitors are an outstanding class of cytotoxic compounds useful for the treatment of different forms of cancer since aberrant choline metabolism is a feature of neoplastic cells. Here, we present the most in-depth structure-activity relationship studies of an interesting series of non-symmetric choline kinase inhibitors previously reported by our group: - and -. They are characterized by cationic heads of 3-aminophenol bound to 4-(dimethylamino)- or 4-(pyrrolidin-1-yl)pyridinium through several linkers.
View Article and Find Full Text PDFProtein kinase CK1δ expression and activity is involved in different pathological situations that include neuroinflammatory and neurodegenerative diseases. For this reason, protein kinase CK1δ has become a possible therapeutic target for these conditions. 5,6-fused bicyclic heteroaromatic systems that resemble adenine of ATP represent optimal scaffolds for the development of a new class of ATP competitive CK1δ inhibitors.
View Article and Find Full Text PDFThree different series of cis-restricted analogues of combretastatin A-4 (CA-4), corresponding to thirty-nine molecules that contained a pyrrole nucleus interposed between the two aryl rings, were prepared by a palladium-mediated coupling approach and evaluated for their antiproliferative activity against six human cancer cell lines. In the two series of 1,2-diaryl pyrrole derivatives, results suggested that the presence of the 3',4',5'-trimethoxyphenyl moiety at the N-1 position of the pyrrole ring was more favorable for antiproliferative activity. In the series of 3,4-diarylpyrrole analogues, three compounds (11i-k) exhibited maximal antiproliferative activity, showing excellent antiproliferative activity against the CA-4 resistant HT-29 cells.
View Article and Find Full Text PDFSeeking for new anticancer drugs with strong antiproliferative activity and simple molecular structure, we designed a novel series of compounds based on our previous reported pharmacophore model composed of five moieties. Antiproliferative assays on four tumoral cell lines and evaluation of Human Choline Kinase CKα1 enzymatic activity was performed for these compounds. Among tested molecules, those ones with biphenyl spacer showed betters enzymatic and antiproliferative activities (n-v).
View Article and Find Full Text PDFA new class of inhibitors of tubulin polymerization based on the 2-amino-3-(3',4',5'-trimethoxybenzoyl)benzo[b]furan molecular scaffold was synthesized and evaluated for in vivo and in vitro biological activity. These derivatives were synthesized with different electron-releasing or electron-withdrawing substituents at one of the C-4 through C-7 positions. Methoxy substitution and location on the benzene part of the benzo[b]furan ring played an important role in affecting antiproliferative activity, with the greatest activity occurring with the methoxy group at the C-6 position, the least with the substituent at C-4.
View Article and Find Full Text PDFThe members of the BCL-2 associated athanogene (BAG) family participate in the regulation of a variety of interrelated physiological processes, such as autophagy, apoptosis, and protein homeostasis. Under normal circumstances, the six BAG members described in mammals (BAG1-6) principally assist the 70 kDa heat-shock protein (HSP70) in protein folding; however, their role as oncogenes is becoming increasingly evident. Deregulation of the BAG multigene family has been associated with cell transformation, tumor recurrence, and drug resistance.
View Article and Find Full Text PDFThe presence of the chromosomal rearrangement t(12;21)() in childhood B-acute lymphoblastic leukemia (B-ALL) is an independent predictor of favorable prognosis, however relapses still occur many years later after stopping therapy, and patients often display resistance to current treatments. Since spleen tyrosine kinase (SYK), a cytosolic nonreceptor tyrosine kinase interacting with immune receptors, has been previously associated with malignant transformation and cancer cell proliferation, we aimed to assess its role in cell survival and prognosis. We evaluated the effects on cell survival of three SYK inhibitors and showed that all of them, in particular entospletinib, are able to induce cell death and enhance the efficacy of conventional chemotherapeutics.
View Article and Find Full Text PDFA series of 3-(3',4',5'-trimethoxyphenyl)-4-substituted 1H-pyrazole and their related 3-aryl-4-(3',4',5'-trimethoxyphenyl)-1-H-pyrazole regioisomeric derivatives, prepared as cis-rigidified combretastatin A-4 (CA-4) analogues, were synthesized and evaluated for their in vitro antiproliferative against six different cancer cell lines and, for selected highly active compounds, inhibitory effects on tubulin polymerization, cell cycle effects and in vivo potency. We retained the 3',4',5'-trimethoxyphenyl moiety as ring A throughout the present investigation, and a structure-activity relationship (SAR) information was obtained by adding electron-withdrawing (OCF, CF) or electron-releasing (alkyl and alkoxy) groups on the second aryl ring, corresponding to the B-ring of CA-4, either at the 3- or 4-position of the pyrazole nucleus. In addition, the B-ring was replaced with a benzo[b]thien-2-yl moiety.
View Article and Find Full Text PDFWe synthesized eight new bipyridine and bipyrimidine gold (III) dithiocarbamate-containing complexes (- and tested them in a panel of human cancer cell lines. We used osteosarcoma (MG-63), lung (A549), prostate (PC3 and DU145), breast (MCF-7), ovarian (A2780 and A2780cis, cisplatin- and doxorubicin-resistant), and cervical (ME-180 and R-ME-180, cisplatin resistant) cancer cell lines. We found that , , , and were more cytotoxic than cisplatin in all cell lines tested and overcame cisplatin and doxorubicin resistance in A2780cis and R-ME-180 cells.
View Article and Find Full Text PDFThe clinical evidence for the success of tyrosine kinase inhibitors in combination with microtubule-targeting agents prompted us to design and develop single agents that possess both epidermal growth factor receptor (EGFR) kinase and tubulin polymerization inhibitory properties. A series of 6-aryl/heteroaryl-4-(3',4',5'-trimethoxyanilino)thieno[3,2- d]pyrimidine derivatives were discovered as novel dual tubulin polymerization and EGFR kinase inhibitors. The 4-(3',4',5'-trimethoxyanilino)-6-( p-tolyl)thieno[3,2- d]pyrimidine derivative 6g was the most potent compound of the series as an antiproliferative agent, with half-maximal inhibitory concentration (IC) values in the single- or double-digit nanomolar range.
View Article and Find Full Text PDFCholine kinase (ChoK) is the first enzyme of the Kennedy pathway leading to the biosynthesis of phosphatidylcholine (PtdCho), the most abundant phospholipid in eukaryotic cell membranes. EB-3D is a novel choline kinase α1 (ChoKα1) inhibitor with potent antiproliferative activity against a panel of several cancer cell lines. ChoKα1 is particularly overexpressed and hyperactivated in aggressive breast cancer.
View Article and Find Full Text PDFAim: Choline kinase α inhibitors represent one of the newest classes of cytotoxic drugs for cancer treatment, since aberrant choline metabolism is a characteristic shared by many human cancers.
Results: Here, we present a new class of asymmetrical pyridinium/quinolinium derivatives developed and designed based on drug optimization.
Conclusion: Among all compounds described here, compound 8, bearing a 7-chloro-4N-methyl-p-chloroaniline quinolinium moiety, exhibited the greatest inhibitory activity at the enzyme (IC = 0.
Choline kinase alpha 1 (ChoKα1) has recently become an interesting therapeutic target since its overexpression has been associated to tumorigenesis in many cancers. Nevertheless, little is known regarding hematological malignancies. In this manuscript, we investigated the effect of a novel and selective ChoKα inhibitor EB-3D in T acute lymphoblastic leukemia (T-ALL).
View Article and Find Full Text PDF