Publications by authors named "Marios L Tringides"

Malaria, a devastating parasitic infection, is the leading cause of death in many developing countries. Unfortunately, the most deadliest causative agent of malaria, , has developed resistance to nearly all currently available antimalarial drugs. The Niemann-Pick type C1-related (PfNCR1) transporter has been identified as a druggable target, but its structure and detailed molecular mechanism are not yet available.

View Article and Find Full Text PDF

The Mycobacterium tuberculosis (Mtb) pathogen, the causative agent of the airborne infection tuberculosis (TB), harbors a number of mycobacterial membrane protein large (MmpL) transporters. These membrane proteins can be separated into 2 distinct subclasses, where they perform important functional roles, and thus, are considered potential drug targets to combat TB. Previously, we reported both X-ray and cryo-EM structures of the MmpL3 transporter, providing high-resolution structural information for this subclass of the MmpL proteins.

View Article and Find Full Text PDF

The application of integrated systems biology to the field of structural biology is a promising new direction, although it is still in the infant stages of development. Here we report the use of single particle cryo-EM to identify multiple proteins from three enriched heterogeneous fractions prepared from human liver mitochondrial lysate. We simultaneously identify and solve high-resolution structures of nine essential mitochondrial enzymes with key metabolic functions, including fatty acid catabolism, reactive oxidative species clearance, and amino acid metabolism.

View Article and Find Full Text PDF

We recently developed a "Build and Retrieve" cryo-electron microscopy (cryo-EM) methodology, which is capable of simultaneously producing near-atomic resolution cryo-EM maps for several individual proteins from a heterogeneous, multiprotein sample. Here we report the use of "Build and Retrieve" to define the composition of a raw human brain microsomal lysate. From this sample, we simultaneously identify and solve cryo-EM structures of five different brain enzymes whose functions affect neurotransmitter recycling, iron metabolism, glycolysis, axonal development, energy homeostasis, and retinoic acid biosynthesis.

View Article and Find Full Text PDF

Recent work demonstrates that the MmpL (mycobacterial membrane protein large) transporters are dedicated to the export of mycobacterial lipids for cell wall biosynthesis. An MmpL transporter frequently works with an accessory protein, belonging to the MmpS (mycobacterial membrane protein small) family, to transport these key virulence factors. One such efflux system in Mycobacterium tuberculosis is the MmpS5-MmpL5 transporter.

View Article and Find Full Text PDF

The Rv1217c-Rv1218c multidrug efflux system, which belongs to the ATP-binding cassette superfamily, recognizes and actively extrudes a variety of structurally unrelated toxic chemicals and mediates the intrinsic resistance to these antimicrobials in Mycobacterium tuberculosis. The expression of Rv1217c-Rv1218c is controlled by the TetR-like transcriptional regulator Rv1219c, which is encoded by a gene immediately upstream of rv1218c. To elucidate the structural basis of Rv1219c regulation, we have determined the crystal structure of Rv1219c, which reveals a dimeric two-domain molecule with an entirely helical architecture similar to members of the TetR family of transcriptional regulators.

View Article and Find Full Text PDF