Parametric resonances and amplification have led to extraordinary photoinduced phenomena in pump-probe experiments. While these phenomena manifest themselves in out-of-equilibrium settings, here, we present the striking result of parametric amplification in equilibrium. We demonstrate that quantum and thermal fluctuations of a Raman-active mode amplifies light inside a cavity, at equilibrium, when the Raman mode frequency is twice the cavity mode frequency.
View Article and Find Full Text PDFPhotonic time crystals refer to materials whose dielectric properties are periodic in time, analogous to a photonic crystal whose dielectric properties is periodic in space. Here, we theoretically investigate photonic time-crystalline behaviour initiated by optical excitation above the electronic gap of the excitonic insulator candidate TaNiSe. We show that after electron photoexcitation, electron-phonon coupling leads to an unconventional squeezed phonon state, characterised by periodic oscillations of phonon fluctuations.
View Article and Find Full Text PDFWe report the existence of dissipationless currents in bilayer superconductors above the critical temperature T_{c}, assuming that the superconducting phase transition is dominated by phase fluctuations. Using a semiclassical U(1) lattice gauge theory, we show that thermal fluctuations cause a transition from the superconducting state at low temperature to a resistive state above T_{c}, accompanied by the proliferation of unbound vortices. Remarkably, while the proliferation of vortex excitations causes dissipation of homogeneous in-plane currents, we find that counterflow currents, flowing in the opposite direction within a bilayer, remain dissipationless.
View Article and Find Full Text PDFOptical driving of materials has emerged as a versatile tool to control their properties, with photo-induced superconductivity being among the most fascinating examples. In this work, we show that light or lattice vibrations coupled to an electronic interband transition naturally give rise to electron-electron attraction that may be enhanced when the underlying boson is driven into a non-thermal state. We find this phenomenon to be resonantly amplified when tuning the boson's frequency close to the energy difference between the two electronic bands.
View Article and Find Full Text PDFCondensates are a hallmark of emergence in quantum materials such as superconductors and charge density waves. Excitonic insulators are an intriguing addition to this library, exhibiting spontaneous condensation of electron-hole pairs. However, condensate observables can be obscured through parasitic coupling to the lattice.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2023
The excitonic insulator is an electronically driven phase of matter that emerges upon the spontaneous formation and Bose condensation of excitons. Detecting this exotic order in candidate materials is a subject of paramount importance, as the size of the excitonic gap in the band structure establishes the potential of this collective state for superfluid energy transport. However, the identification of this phase in real solids is hindered by the coexistence of a structural order parameter with the same symmetry as the excitonic order.
View Article and Find Full Text PDF