Publications by authors named "Marion de la Mare"

Covalent protein complexes have been used to assemble enzymes in large scaffolds for biotechnology purposes. Although the catalytic mechanism of the covalent linking of such proteins is well known, the recognition and overall structural mechanisms driving the association are far less understood but could help further functional engineering of these complexes. Here, we study the Jo-In complex by NMR spectroscopy and molecular modelling.

View Article and Find Full Text PDF

Synergism between enzymes is of crucial importance in cell metabolism. This synergism occurs often through a spatial organisation favouring proximity and substrate channelling. In this context, we developed a strategy for evaluating the impact of the geometry between two enzymes involved in nature in the recycling of the carbon derived from plant cell wall polymers.

View Article and Find Full Text PDF

Penicillium funiculosum is an industrial fungus exploited for its capacity to secrete a wide array of glycosyl hydrolases (GHs) and glycosyl transferases (GTs). These enzymes are part of an enzymatic cocktail that is commercialized under the name RovabioExcel(®), which is used as feed additive in animal nutrition. The genome sequence of this filamentous fungus has revealed a remarkable richness in several accessory enzymes, and notably in α-l-arabinofuranosidases (α-l-AFases) that participate in the hydrolysis of arabinoxylans (AX) in corn/wheat fibers used in poultry feed.

View Article and Find Full Text PDF

Miniature Inverted-repeat Transposable Elements (MITEs) are small nonautonomous class-II transposable elements distributed throughout eukaryotic genomes. We identified a novel family of MITEs (named Alex) in the Coffea canephora genome often associated with expressed sequences. The Alex-1 element is inserted in an intron of a gene at the CcEIN4 locus.

View Article and Find Full Text PDF

Background: Coffea canephora, also called Robusta, belongs to the Rubiaceae, the fourth largest angiosperm family. This diploid species (2x = 2n = 22) has a fairly small genome size of approximately 690 Mb and despite its extreme economic importance, particularly for developing countries, knowledge on the genome composition, structure and evolution remain very limited. Here, we report the 160 kb of the first C.

View Article and Find Full Text PDF