The multi-step process of hepatitis C virus (HCV) entry is facilitated by various host factors, including epidermal growth factor receptor (EGFR) and the tight junction proteins claudin-1 (CLDN1) and occludin (OCLN), which are thought to function at later stages of the HCV entry process. Using single particle imaging of HCV infection of polarized hepatoma spheroids, we observed that EGFR performs multiple functions in HCV entry, both phosphorylation-dependent and -independent. We previously observed, and in this study confirmed, that EGFR is not required for HCV migration to the tight junction.
View Article and Find Full Text PDFThe mechanisms utilized by different flaviviruses to evade antiviral functions of interferons are varied and incompletely understood. Using virological approaches, biochemical assays, and mass spectrometry analyses, we report here that the NS5 protein of tick-borne encephalitis virus (TBEV) and Louping Ill virus (LIV), two related tick-borne flaviviruses, antagonize JAK-STAT signaling through interactions with the tyrosine kinase 2 (TYK2). Co-immunoprecipitation (co-IP) experiments, yeast gap-repair assays, computational protein-protein docking and functional studies identify a stretch of 10 residues of the RNA dependent RNA polymerase domain of tick-borne flavivirus NS5, but not mosquito-borne NS5, that is critical for interactions with the TYK2 kinase domain.
View Article and Find Full Text PDFFunctional constraints on viral proteins are often assessed by examining sequence conservation among natural strains, but this approach is relatively ineffective for Zika virus because all known sequences are highly similar. Here, we take an alternative approach to map functional constraints on Zika virus's envelope (E) protein by using deep mutational scanning to measure how all amino acid mutations to the E protein affect viral growth in cell culture. The resulting sequence-function map is consistent with existing knowledge about E protein structure and function but also provides insight into mutation-level constraints in many regions of the protein that have not been well characterized in prior functional work.
View Article and Find Full Text PDFTwo classes of antivirals targeting the viral neuraminidase (NA) and endonuclease are currently the only clinically useful drugs for the treatment of influenza. However, resistance to both antivirals has been observed in clinical isolates, and there was widespread resistance to oseltamivir (an NA inhibitor) among H1N1 viruses prior to 2009. This potential for resistance and lack of diversity for antiviral targets highlights the need for new influenza antivirals with a higher barrier to resistance.
View Article and Find Full Text PDFZika virus (ZIKV) glycoproteins are the primary target of the humoral immune response. In this study, we explored the capacity of these glycoproteins to tolerate insertion of linear epitope sequences and the potential of antibodies that bind these epitopes to inhibit infection. We first created a panel of ZIKV mutants with the FLAG epitope inserted in the premembrane (prM) and envelope (E) glycoprotein regions.
View Article and Find Full Text PDFZika virus (ZIKV) is a mosquito borne flavivirus, which was a neglected tropical pathogen until it emerged and spread across the Pacific Area and the Americas, causing large human outbreaks associated with fetal abnormalities and neurological disease in adults. The factors that contributed to the emergence, spread and change in pathogenesis of ZIKV are not understood. We previously reported that ZIKV evades cellular antiviral responses by targeting STAT2 for degradation in human cells.
View Article and Find Full Text PDFThe recent Zika virus (ZIKV) outbreak has been linked to severe pathogenesis. Here, we report the construction of a plasmid carrying a cytomegalovirus (CMV) promoter-expressed prototype 1947 Uganda MR766 ZIKV cDNA that can initiate infection following direct plasmid DNA transfection of mammalian cells. Incorporation of a synthetic intron in the nonstructural protein 1 (NS1) region of the ZIKV polyprotein reduced viral cDNA-associated toxicity in bacteria.
View Article and Find Full Text PDFHepatitis C virus (HCV) replication requires binding of the liver-specific microRNA (miRNA) miR-122 to two sites in the HCV 5' untranslated region (UTR). Although we and others have shown that viral genetics impact the amount of active miR-122 required for replication, it is unclear if HCV can replicate in the complete absence of this miRNA. To probe the absolute requirements for miR-122 and the genetic basis for those requirements, we used clustered regularly interspaced short palindromic repeat (CRISPR) technology to knock out miR-122 in Huh-7.
View Article and Find Full Text PDFThe ongoing epidemic of Zika virus (ZIKV) illustrates the importance of flaviviruses as emerging human pathogens. All vector-borne flaviviruses studied thus far have to overcome type I interferon (IFN) to replicate and cause disease in vertebrates. The mechanism(s) by which ZIKV antagonizes IFN signaling is unknown.
View Article and Find Full Text PDFHepatitis C virus (HCV) replication is dependent on a liver-specific microRNA (miRNA), miR-122. A recent clinical trial reported that transient inhibition of miR-122 reduced viral titres in HCV-infected patients. Here we set out to better understand how miR-122 inhibition influences HCV replication over time.
View Article and Find Full Text PDFUnlabelled: Hepatitis C virus (HCV) exposure leads to persistent life-long infections characterized by chronic inflammation often developing into cirrhosis and hepatocellular carcinoma. The mechanism by which HCV remains in the liver while inducing an inflammatory and antiviral response remains unclear. Though the innate immune response to HCV in patients seems to be quite active, HCV has been shown in cell culture to employ a diverse array of innate immune antagonists, which suggests that current model systems to study interactions between HCV and the innate immune system are not representative of what happens in vivo.
View Article and Find Full Text PDFChikungunya Virus (CHIKV), a re-emerging arbovirus that may cause severe disease, constitutes an important public health problem. Herein we describe a novel CHIKV infection model in zebrafish, where viral spread was live-imaged in the whole body up to cellular resolution. Infected cells emerged in various organs in one principal wave with a median appearance time of ∼14 hours post infection.
View Article and Find Full Text PDFBackground: Newly synthesized HIV-1 particles assemble at the plasma membrane of infected cells, before being released as free virions or being transferred through direct cell-to-cell contacts to neighboring cells. Localization of HIV-1 Gag precursor at the cell membrane is necessary and sufficient to trigger viral assembly, whereas the GagPol precursor is additionally required to generate a fully matured virion. HIV-1 Nef is an accessory protein that optimizes viral replication through partly defined mechanisms.
View Article and Find Full Text PDFThe narrow species tropism of hepatitis C virus (HCV) limits animal studies. We found that pigtail macaque (Macaca nemestrina) hepatic cells derived from induced pluripotent stem cells support the entire HCV life cycle, although infection efficiency was limited by defects in the HCV cell entry process. This block was overcome by either increasing occludin expression, complementing the cells with human CD81, or infecting them with a strain of HCV with less restricted requirements for CD81.
View Article and Find Full Text PDFUnderstanding the fetal hepatic niche is essential for optimizing the generation of functional hepatocyte-like cells (hepatic cells) from human embryonic stem cells (hESCs). Here, we show that KDR (VEGFR2/FLK-1), previously assumed to be mostly restricted to mesodermal lineages, marks a hESC-derived hepatic progenitor. hESC-derived endoderm cells do not express KDR but, when cultured in media supporting hepatic differentiation, generate KDR+ hepatic progenitors and KDR- hepatic cells.
View Article and Find Full Text PDFHepatitis C virus (HCV) is a major cause of liver disease worldwide. A better understanding of its life cycle, including the process of host cell entry, is important for the development of HCV therapies and model systems. Based on the requirement for numerous host factors, including the two tight junction proteins claudin-1 (CLDN1) and occludin (OCLN), HCV cell entry has been proposed to be a multi-step process.
View Article and Find Full Text PDFThe liver-specific microRNA miR-122 is required for efficient hepatitis C virus (HCV) RNA replication both in cell culture and in vivo. In addition, nonhepatic cells have been rendered more efficient at supporting this stage of the HCV life cycle by miR-122 expression. This study investigated how miR-122 influences HCV replication in the miR-122-deficient HepG2 cell line.
View Article and Find Full Text PDFCell-free HIV-1 virions are poor stimulators of type I interferon (IFN) production. We examined here how HIV-infected cells are recognized by plasmacytoid dendritic cells (pDCs) and by other cells. We show that infected lymphocytes are more potent inducers of IFN than virions.
View Article and Find Full Text PDFHepatitis C virus (HCV) is a leading cause of liver disease worldwide. As HCV infects only human and chimpanzee cells, antiviral therapy and vaccine development have been hampered by the lack of a convenient small-animal model. In this study we further investigate how the species tropism of HCV is modulated at the level of cell entry.
View Article and Find Full Text PDFThe IFN-inducible antiviral protein tetherin (or BST-2/CD317/HM1.24) impairs release of mature HIV-1 particles from infected cells. HIV-1 Vpu antagonizes the effect of tetherin.
View Article and Find Full Text PDFChikungunya virus (CHIKV) is the causative agent of an outbreak that began in La Réunion in 2005 and remains a major public health concern in India, Southeast Asia, and southern Europe. CHIKV is transmitted to humans by mosquitoes and the associated disease is characterized by fever, myalgia, arthralgia, and rash. As viral load in infected patients declines before the appearance of neutralizing antibodies, we studied the role of type I interferon (IFN) in CHIKV pathogenesis.
View Article and Find Full Text PDFType I interferons (IFN) inhibit several steps of the human immunodeficiency virus type 1 (HIV) replication cycle. Some HIV proteins, like Vif and Vpu, directly counteract IFN-induced restriction factors. Other mechanisms are expected to modulate the extent of IFN inhibition.
View Article and Find Full Text PDFAn unprecedented epidemic of chikungunya virus (CHIKV) infection recently started in countries of the Indian Ocean area, causing an acute and painful syndrome with strong fever, asthenia, skin rash, polyarthritis, and lethal cases of encephalitis. The basis for chikungunya disease and the tropism of CHIKV remain unknown. Here, we describe the replication characteristics of recent clinical CHIKV strains.
View Article and Find Full Text PDFBackground: Chikungunya (CHIK) virus is a mosquito-transmitted alphavirus that causes in humans an acute infection characterised by fever, polyarthralgia, head-ache, and myalgia. Since 2005, the emergence of CHIK virus was associated with an unprecedented magnitude outbreak of CHIK disease in the Indian Ocean. Clinically, this outbreak was characterized by invalidating poly-arthralgia, with myalgia being reported in 97.
View Article and Find Full Text PDF