Publications by authors named "Marion Scarafagio"

Combining the quantum optical properties of single-photon emitters with the strong near-field interactions available in nanophotonic and plasmonic systems is a powerful way of creating quantum manipulation and metrological functionalities. The ability to actively and dynamically modulate emitter-environment interactions is of particular interest in this regard. While thermal, mechanical and optical modulation have been demonstrated, electrical modulation has remained an outstanding challenge.

View Article and Find Full Text PDF

Infrared thermal imaging devices rely on narrow band gap semiconductors grown by physical methods such as molecular beam epitaxy and chemical vapor deposition. These technologies are expensive, and infrared detectors remain limited to defense and scientific applications. Colloidal quantum dots (QDs) offer a low cost alternative to infrared detector by combining inexpensive synthesis and an ease of processing, but their performances are so far limited, in terms of both wavelength and sensitivity.

View Article and Find Full Text PDF